當前位置:首頁 » 基礎知識 » 人教版七年級數學上冊重點知識
擴展閱讀
英語選修8知識點總結 2024-11-16 03:42:07
折什麼禮物給同學好 2024-11-16 03:42:06
走向孤獨歌詞表達了什麼 2024-11-16 03:37:13

人教版七年級數學上冊重點知識

發布時間: 2022-08-28 06:27:09

A. 人教版初一數學上冊復習資料

《有理數》總復習(一) 教案
一、內容分析
小結與復習分作兩個部分。第一部分概述了正數與負數、有理數、相反數、絕對值等概念,以及有理數的加、減、乘、除、乘方的運算方法與運算律,從而給出全章內容的大致輪廓,第二部分針對這一章新出現的內容、方法等提出了一些個問題;通過這些問題引發學生的思考,主動進行新的知識的建構。
二、課時安排:
小節與復習的要求是要把這一章內容系統化,從而進一步鞏固和加深理解學習內容。本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。因此,本章總復習的二課時這樣安排(測驗課除外):
第一課時復習有理數的意義及其有關概念;
第二課時復習有理數的運算。
三、教學方法的確定:
回顧有理數這一章涉及的概念,檢測學生知識掌握程度,科學地進行小結與歸納。
四、教學安排:

第一課時

一、教學目標:
1.知識與技能:
①理解八個重要概念:有理數、數軸、相反數、絕對值、倒數、科學計數法、近似數、有效數字.
②使學生提高辨別概念能力,能正確地使用這些概念解決問題.
③能正確比較兩個有理數的大小.
2.過程與方法
在教學過程中,應利用數軸來認識、理解有理數的有關概念,藉助數軸,把這些概念串在一起形成一個用以描述有理數特徵的系統。另外,
3.情感態度和價值觀
在運用有理數概念的同時,還應注意糾正可能出現的錯誤認識,使學生在學習中學會發現錯誤和改正錯誤。
二、教學重點:
對有理數的八個概念:有理數、數軸、相反數、絕對值、倒數、科學計數法、近似數、有效數字的理解與運用。
三、教學難點:
對絕對值概念的理解與應用。
四、教學過程:
(一)知識梳理與鞏固練習:
1、正數與負數:在正數前面加「—」的數叫做負數;(給出負數的概念,然後出一些判斷題和應用文字題,讓學生了解負數的概念和負數在生產、生活中的應用.)

[基礎練習]
1.判斷
1)a一定是正數;
2)-a一定是負數;
3)-(-a)一定大於0;
2.加-20%,實際的意思是.
3.乙大-3表示的意思是.
2.有理數的分類:(通過下面概括讓學生掌握有理數的兩種分類方法)

[基礎練習]:
1.把下列各數填在相應額大括弧內:
1,-0.1,-789,25,0,-20,-3.14,-590,6/7
正整數集 { }; 正有理數集{ };
負有理數集{ };
自然數集{ };正分數集 { };
負分數集{ }.
2. 某種食用油的價格隨著市場經濟的變化漲落,規定上漲記為正,則-5.8元的意義是 ;如果這種油的原價是76元,那麼現在的賣價是 .
3.數軸:規定了原點、正方向和單位長度的直線.
-3 –2 –1 0 1 2 3

1)在數軸上表示的兩個數,右邊的數總比左邊的數大
2)正數都大於0,負數都小於0;正數大於一切負數;
3)所有有理數都可以用數軸上的點表示.
[基礎練習]
1.如圖所示的圖形為四位同學畫的數軸,其中正確的是( )

2.比-3大的負整數是_______; ②已知m是整數且-4<m<3,則m為_______________.③有理數中,最大的負整數是__,最小的正整數是__.最大的非正數是__.
3.軸上點A表示-4,如果把原點O向負方向移動1個單位,那麼在新數軸上點A表示的數是( )
A.-5, B.-4 C.-3 D.-2
4.相反數:只有符號不同的兩個數,其中一個是另一個的相反數. (給出相反數的定義以及要注意的結論.)
1)數a的相反數是-a(a是任意一個有理數);
2)0的相反數是0. 3)若a、b互為相反數,則a+b=0.
[基礎練習]
1.-5的相反數是 ;-(-8)的相反數是 ;0的相反數是 ; a的相反數是 ;
2用-a表示的數一定是( )
A .負數 B. 正數
C .正數或負數 D.正數或負數或0
3一個數的相反數是最小的正整數,那麼這個數是( )
A .–1 B. 1 C .±1 D. 0
4①互為相反的兩個數在數軸上位於原點兩旁( )
②只要符號不同,這兩個數就是相反數( )
5.倒數:乘積是1的兩個數互為倒數.(給出倒數的概念,以及要主要的結論)
1)a的倒數是 (a≠0);
2)0沒有倒數 ;
3)若a與b互為倒數,則ab=1.
4)倒數是它本身的是______.
6.絕對值:一個數a的絕對值就是數軸上表示數a的點與原點的距離.(讓學生注意理解絕對值的定義及其的值為非負數的特點.)
1)數a的絕對值記作︱a︱;
若a>0,則︱a︱= ;
2) 若a<0,則︱a︱= ;
若a =0,則︱a︱= ;
3) 對任何有理數a,總有︱a︱≥0.
[基礎練習]
1.—2的絕對值表示它離開原點的距離是 個單位.
2.絕對值等於其相反數的數一定是( )
A.負數 B.正數 C.負數或零 D.正數或零
3.計算

7.有理數大小的比較:(有理數的比較方法總結).
1)可通過數軸比較:在數軸上的兩個數,右邊的數總比左邊的數大;
正數都大於0,負數都小於0;正數大於一切負數;
2)兩個負數,絕對值大的反而小.
即:若a<0,b<0,且︱a︱>︱b︱,則a < b.
8.科學記數法、近似數與有效數字(給出科學記數法的定義,近似數和有效數字的等的定義)
1).把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數(即1≤a<10),這種記數法叫做科學記數法 .
2).一個近似數,從左邊第一個不是0的數字起到,到精確到的數位止,所有的數字,都叫做這個數的有效數字.
[基礎練習]
1.一隻蒼蠅的腹內細菌多達2800萬個,你能用科學記數法表示嗎?
2. 1.03×106有幾位整數?
3. 3.0×10n(n是正整數)有幾位整數?
4:下列由四捨五入得到的近似數,各精確到哪一位,各有幾位有效數字?
(1)43.8(2)0.03086(3)2.4萬(4)6×104 (5)6.0×104
(二)課堂小結:
要注意的幾個問題
1.有理數的兩種分類經常用到,應注意它們的區別;
2.數軸的三要素缺一不可,利用數軸可直觀地比較有理數的大小;
3.相反數指的是兩個僅符號不同的數,數軸上表示一對相反數的兩個點到原點的距離相等,它們的和為0;而倒數指的是兩個乘積為1的數;
4.一個數的絕對值總是非負數,數a的絕對值是數軸上表示數a的點到原點的距離;
(三)布置作業:

B. 人教版 初一上冊數學知識點 是什麼

重點是在一元一次方程和最後的幾何,像前面的實數還有一些代數,其實很簡單的

C. 人教版初一數學知識點

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學下冊知識點 總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示 方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

篇三:正方體

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.

(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.

篇四:一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13、解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的方法並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

七年級數學 學習方法 技巧

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


人教版初一數學知識點相關 文章 :

★ 初一數學人教版知識點歸納

★ 初一數學上冊知識點人教版

★ 人教版初一數學知識點

★ 初一數學上冊知識點歸納

★ 初一數學人教版上知識點

★ 初一數學知識點人教版

★ 初一人教版數學上冊知識點總結歸納

★ 初一上冊數學知識點總結人教版(2)

★ 初一數學上冊人教版提綱

★ 初一數學上冊人教版知識點歸納(2)

D. 初一上冊數學人教版知識要點歸納總結

初一數學上冊復習教學知識點歸納總結

一:有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號「-」的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、 由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、 三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、 一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、 求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

註:黑體字為重要部分
二:整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、 一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
三:一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
三:圖形初步認識
知識網路:
概念、定義:
1、 我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等。

E. 人教版初中數學七年級上知識點總結(新)(全)

萬門大學崔亮基礎班初中數學七年級上(超清視頻)網路網盤

鏈接:

提取碼: mm7k

若資源有問題歡迎追問~

F. 初一數學基礎知識

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

【生活中的軸對稱】

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

初一下冊數學《三角形》知識點

一、目標與要求

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

初一 數學學習方法

一預習

對於理科學習,預習是必不可少的。我們在預習中,應該把書上的內容看一遍,盡力去理解,對解決不了的問題適當作出標記,請教老師或課上聽講解決,並試著做一做書後的習題檢驗預習效果。

二聽講

這一環節最為重要,因為老師把知識的精華都濃縮在課堂上,聽數學課時應做到抓住老師講題的思路,方法。有問題記下來,課下整理,解決,數學課上一定要積極思考,跟著老師的思路走。

三復習

體會老師課上的例題,整理思維,想想自己是怎麼想的,與老師的思路有何異同,想想每一道題的考點,並試著一題多解,做到舉一反三。

四作業

認真完成老師留的習題,適當挑選一些課外習題作為練習,但切忌一味追求偏題,怪題,更不要打「題海戰術」。

五總結

這一步是為了更好的掌握所學知識。在學完一段知識或做了一道典型題後可總結:總結專題的數學知識;總結自己卡殼的地方;總結自己是怎麼錯的,錯在哪裡,總結題目的「陷阱」設在哪裡及總結自己或他人的想法。

如何挑選及處理習題

一市面上的習題集數不勝數,大多數的習題集互相抄襲,漏洞百出,使同學在練習的過程中費時費力。我認為歷的考試真題是的習題,它緊扣考試大綱,難度適中,不會出現偏題怪題的現象。同時也使同學們緊緊的把握考試的方向,少走彎路。

二有的同學喜歡「題海戰術」拿題就做,從不總結,感覺作的越多,成績越高。這是學習數學的弊端之一。

要記住:題不在於多而在於精。作題是必不可少的,但作完每一道題都要認真的 反思 ,這道題的考點是什麼,這道題的解題方法有多少種,哪種方法最簡便,對於作錯的習題要反復的思考,找出錯誤的原因,確保該知識點的熟練掌握。

三很多同學喜歡作偏題,難題。但卻疏忽了對書本中的定義,概念及公式的理解。從而導致了在考試中經常出現「基本題」失誤的現象。

因此,在平時的數學練習中,要對書中的每一個知識點都要深刻的理解,找出可能出現的考點,陷阱。在考試中則要做到「基本題全作對,穩作中檔題一分不浪費,盡力沖擊高檔題,即使錯了不後悔。」


初一數學基礎知識點相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初一數學基礎知識有哪些?

★ 初一數學上冊知識點

★ 人教版初一數學知識點整理

★ 初中數學基礎知識點歸納總結

★ 初一數學上冊知識點歸納

★ 初中數學基礎知識點總結

★ 初一數學課本知識點總結

★ 初一數學知識點整理

★ 初一數學知識點歸納與學習方法

G. 人教版七年級數學上冊知識點總結

習中的困難莫過於一節一節的台階,雖然台階很陡,但只要一步一個腳印的踏,攀登一層一層的台階,才能實現學習的理想。 下面我給大家帶來人教版 七年級數學 上冊知識點 總結 ,希望大家喜歡!

人教版七年級數學上冊知識點總結

(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

第二章整式(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

人教版七年級數學上冊知識學習技巧

一、要不斷培養學習數學的興趣和求知渴望

有許多同學在小學都曾有過這樣的感受,每當你認識了一個數學規律,解決了一個較難的應用問題,成功的喜悅是無法用別的東西來替代的,它激勵你的學習熱情和好奇心,越學越愛學。學習的興趣和求知慾是要不斷地培養的,況且同學們剛剛邁進「數學王國」的大花園里,許多奧妙無窮的數學問題還等著你們去學習、觀賞、研究。

二、要養成認真讀書,獨立思考的好習慣

過去有些同學認為:學習數學主要是靠上課聽老師講明白,而把我們手中的數學課本僅僅當成做作業的「習題集」。這就有兩個認識問題必須要解決。

一是同學們要認識到,我們的教科書記載了由數學工作者整理的、大家必須掌握的基礎知識,以及如何運用這些知識解決問題等。因此,要想真正獲得知識,認真讀書、培養自學能力是一條根本途徑。我們希望同學們在中學老師的指導、幫助下,從過去不讀書、不會讀書轉變為愛讀書、學會讀書,進而養成認真讀書的好習慣。

二是同學們還要認識到,許多數學問題不是單靠老師講明白的,主要是靠同學們自己想明白的。孔子日:」學而不思則罔,思而不學則殆。」這句話極力精闢地闡述了學習和思考的辯證關系,即要學而恩、又要思而學。大家學習數學的過程主要是自己不斷深入思考的過程。我們希望大家今後在上數學課時。無論老師講新課,還是復習、講評作業練習,都要使自己的注意力高度集中,邊聽邊積極思考問題,捕捉有用的信息,隨時抓住萌發出的靈感。對於沒弄明白的問題,一定要及時、主動去解決它,直到弄懂為止。

人教版七年級數學上冊知識點 復習 方法

復習目標(包括重點難點)

針對全班的學習程度,初步把復習目標定為盡力提高全班學生學習成績,提高優良率和平均分,提高學生運用基礎知識解決實際問題的能力。

復習重點難點:

第五章重點:復習兩條直線的相交和平行的位置關系,以及相交平行的綜合應用。難點:垂直、平行的性質和判定的綜合應用。第六章重點:在平面直角坐標糸中,由已知點的坐標確定這一點的位置,由已知點的位置確定這一點的坐標和平面直角坐標系的應用。難點:建立坐標平面內點與有序實數對之間的一一對應關系和由坐標變化探求圖形之間的變化。

第七章重點:平面直角坐標系,重點是理解平面直角坐標系的有關概念,會畫平面直角坐標系,能在平面直角坐標系中根據坐標找出點,由點找出坐標;加深對數形結合思想的體會。難點是平面直角坐標系的實際應用。

第八章重點:二元一次方程組及相關概念,消元思想和代入法、加減法解二元一次方程組,利用二元一次方程組解決實際問題。難點:以方程組為工具分析問題、解決含有多個未知數的問題。

第九章重點:一元一次不等式(組)的解法及應用。難點:一元一次不等式(組)的解集和應用一元一次不等式(組)解決實際問題。

第十章重點:收集、整理和描述數據。

難點:樣本的抽取,頻數分布直方圖的畫法。

復習策略( 措施 )

預設1.「先分後總」的復習策略,先按章復習,後匯總復習;

2.「邊學邊練」的策略,在復習知識的同時,緊緊抓住練這個環節;

3.「環節檢測」的策略,每復習一個環節,就檢測一次,發現問題及時解決;

3.「模擬模擬」的復習策略,在總復習中,進行幾次模擬測試,來發現問題,並及時解決問題,促進學生學習質量的提高。

4.及時「總結歸納」的策略,對於一個知識環節或相聯系的知識點,要及時進行歸納與總結,讓學生系統掌握知識,提高能力。


人教版七年級數學上冊知識點總結相關 文章 :

★ 人教版七年級數學上冊知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 人教版七年級數學上冊復習提綱

★ 人教版數學七年級上冊復習提綱

★ 七年級數學上冊知識點總結第一章

★ 人教版初一數學上冊知識點

★ 初一數學上冊知識點歸納

★ 人教版初一數學知識點整理

★ 七年級人教版上冊數學復習提綱

★ 新人教版七年級上冊數學知識點

H. 人教版初一數學重要知識點

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

七年級數學 知識點

生活中的軸對稱

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

初一數學知識點

一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路:

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

初一數學 方法 技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做 總結 ,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。


人教版初一數學重要知識點相關 文章 :

★ 人教版初一數學知識點整理

★ 初一數學人教版知識點歸納

★ 初一數學知識點人教版

★ 2021初一數學知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 人教版七年級上冊數學知識點

★ 初一數學重點知識點歸納有哪些

★ 初一數學知識點2021

★ 七年級數學知識點大全

★ 人教版初一數學下冊知識點復習總結備戰中考