Ⅰ 高中數學集合知識點大全
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義,即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。下面我給大家分享一些高中數學集合知識點大全,希望能夠幫助大家,歡迎閱讀!
目錄
高中數學集合知識點
高中數學學習方法
高中數學考試答題技巧
高中數學集合知識點
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,
2.子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)並集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。
4.有關子集的幾個等價關系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、並集運算的性質
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
>>>
高中 數學 學習方法
1、 課前預習 能提高聽課的針對性。
預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助於提高思維能力,預習後把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。
2、聽課過程中的科學。
首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、本等物丟三落四的現象;上課前也不應做過於激烈的 體育運動 或看小書、下棋、激烈爭論等。以免上課後還喘噓噓,或不能平靜下來。
其次就是聽課要全神貫注。
全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。
耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納 總結 ,另外,還要聽同學們的答問,看是否對自己有所啟發。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢等動作,生動而深刻的接受老師所要表達的思想。
心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。
口到:就是在老師的指導下,主動回答問題或參加討論。
手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有 創新思維 的見解。
若能做到上述「五到」,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。
3、特別注意講課的開頭和結尾。
講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。
4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
>>>
高中數學考試答題技巧
掌握時間
由於,基礎中考能力,所以要注重解題的快法和巧法,能在30分鍾左右,完成全部的選擇填空題,這是奪取高分的關鍵。在平時當中一定要求自己選擇填空一分鍾一道題。用數學思想方法高速解答選擇填空題。
先易後難
所以,只做選擇,填空和前三道大題是不夠全面的。因為,後「三難」題中的容易部分比前面的基礎部分還要容易,所以我們應該志在必得。在復習的時候,根據自己的情況,如果基礎較好那首先爭取選擇,填空前三道大題得滿分。然後,再提高解答「三難」題的能力,爭取「三難」題得分20分到30分。這樣,你的總分就可以超過130分,向145分沖刺。
後三題盡量多得分
第二段是解答題的前三題,分值不到40分。這樣前兩個階段的總分在110分左右。第三段是最後「三難」題,分值不到40分。「三難」題並不全難,難點的分值只有12分到18分,平均每道題只有4分到6分。首先,應在「三難」題中奪得12分到20分,剩下最難的步驟分在努力爭取。後3題不是只做第一問的問題,而應該猜想評分標准,按步驟由前向後爭取高分。
>>>
高中數學集合知識點大全相關 文章 :
★ 高一數學集合知識點及例題分析
★ 高一數學集合知識點匯總(2)
★ 高一數學必修一集合公式知識點與學習方法
★ 高中數學全部知識點提綱整理
★ 高中數學必考知識點歸納整理
★ 高中數學知識點重點總結大全
★ 高中數學知識點總結歸納最新
★ 高一數學知識點匯總大全
★ 高一數學知識點全面總結
★ 高一數學必修一知識點整理大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅱ 高一數學集合知識點歸納有哪些
如下:
1、給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
2、一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
3、作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
4、對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
5、含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
Ⅲ 集合數學知識點有哪些
集合數學知識點有如下:
一、集合的含義與表示
1、通過實例了解集合的含義,體會元素與集合的「屬於」關系。
2、能選擇然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
二、集合間的基本關系
1、理解集合之間包含與相等的含義,能識別給定集合的子集。
2、在具體情境中,了解全集與空集的含義。
有限集:含有有限個元素的集合
無限集:含有無限個元素的集合
空集:不含任何元素的集合 例:{x|x2=-5}
概念:
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。
我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S。
Ⅳ 高一數學集合的基本運算知識點
當一個小小的心念變成成為行為時,便能成了習慣;從而形成性格,而性格就決定你一生的成敗。成功與不成功之間有時距離很短——只要後者再向前幾步。我高一頻道為莘莘學子整理了《高 一年級數學 《集合》知識點 總結 》,希望對你有所幫助!
高一數學 集合的基本運算知識點
一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
2.子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={∈A且x∈B}
4)並集:A∪B={∈A或x∈B}
5)補集:CUA={A但x∈U}
注意:①?A,若A≠?,則?A;
②若,,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
4.有關子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={=m+,m∈Z},N={=,n∈Z},P={=,p∈Z},則M,N,P滿足關系
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{=,m∈Z};對於集合N:{=,n∈Z}
對於集合P:{=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以選B。
點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合,,則(B)
A.M=NB.MNC.NMD.
解:
當時,2k+1是奇數,k+2是整數,選B
【例2】定義集合AB={∈A且xB},若A={1,3,5,7},B={2,3,5},則AB的子集個數為
A)1B)2C)3D)4
分析:確定集合AB子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵AB={∈A且xB},∴AB={1,7},有兩個元素,故AB的子集共有22個。選D。
變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為
A)5個B)6個C)7個D)8個
變式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.
【例3】已知集合A={2+px+q=0},B={2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,
∴∴
變式:已知集合A={2+bx+c=0},B={2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={>-2},且A∩B={x1<>
分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。
解答:A={x-2<><-1或x>1}。由A∩B={x1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。<-1或x>
<><-1或x>
綜合以上各式有B={x-1≤x≤5}
變式1:若A={3+2x2-8x>0},B={2+ax+b≤0},已知A∪B={>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設M={2-2x-3=0},N={xax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3},∵M∩N=N,∴NM
①當時,ax-1=0無解,∴a=0②
綜①②得:所求集合為{-1,0,}
【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。
分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。
解答:(1)若,在內有有解
令當時,
所以a>-4,所以a的取值范圍是
變式:若關於x的方程有實根,求實數a的取值范圍。
解答:
點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
三.隨堂演練
選擇題
1.下列八個關系式①{0}=②=0③{}④{}⑤{0}
⑥0⑦{0}⑧{}其中正確的個數
(A)4(B)5(C)6(D)7
2.集合{1,2,3}的真子集共有
(A)5個(B)6個(C)7個(D)8個
3.集合A={x}B={}C={}又則有
(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一個
4.設A、B是全集U的兩個子集,且AB,則下列式子成立的是
(A)CUACUB(B)CUACUB=U
(C)ACUB=(D)CUAB=
5.已知集合A={},B={}則A=
(A)R(B){}
(C){}(D){}
6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是
(A)只有(1)和(4)(B)只有(2)和(3)
(C)只有(2)(D)以上語句都不對
7.設S、T是兩個非空集合,且ST,TS,令X=S那麼S∪X=
(A)X(B)T(C)Φ(D)S
8設一元二次方程ax2+bx+c=0(a<0)的根的判別式,則不等式ax2+bx+c0的解集為
(A)R(B)(C){}(D){}
填空題
9.在直角坐標系中,坐標軸上的點的集合可表示為
10.若A={1,4,x},B={1,x2}且AB=B,則x=
11.若A={x}B={x},全集U=R,則A=
12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合A={},B={x},且AB,則實數k的取值范圍是。
14.設全集U={x為小於20的非負奇數},若A(CUB)={3,7,15},(CUA)B={13,17,19},又(CUA)(CUB)=,則AB=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-3},求實數a。
16(12分)設A=,B=,
其中xR,如果AB=B,求實數a的取值范圍。
四.習題答案
選擇題
12345678
CCBCBCDD
填空題
9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又AB=B,所以BA
(Ⅰ)B=時,4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時,0得a=-1
(Ⅲ)B={0,-4},解得a=1
綜上所述實數a=1或a-1
高一數學集合的基本運算知識點
集合具有某種特定性質的事物的總體。這里的「事物」可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、 口號 等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關系
元素與集合的關系有「屬於」與「不屬於」兩種。
集合與集合之間的關系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為准。所有男人的集合是所有人的集合的真子集。』
集合的幾種運演算法則
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合
1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。
集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。4.無序性:{a,b,c}{c,b,a}是同一個集合。5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
集合有以下性質
若A包含於B,則A∩B=A,A∪B=B
集合的表示方法
集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。
常用的有列舉法和描述法。1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0
4.自然語言常用數集的符號:(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N(2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z-(3)全體整數的集合通常稱作整數集,記作Z(4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-)(5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-)(6)復數集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合「容斥原理」在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設A為集合,把A的全部子集構成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復數集C實數集R正實數集R+負實數集R-整數集Z正整數集Z+負整數集Z-有理數集Q正有理數集Q+負有理數集Q-不含0的有理數集Q
高一數學集合的基本運算知識點
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合
1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。
至於 學習方法 的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而y=f(x-l)與y=f(1-x)的圖象卻關於直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2、『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
高一數學集合的基本運算知識點相關 文章 :
★ 高一數學集合的基本運算的知識點分析
★ 高一數學集合知識點及例題講解
★ 高一數學集合間的基本關系的知識點(2)
★ 高一數學集合間的基本關系的知識點
★ 高一數學必修一集合的運算知識點
★ 高一數學集合間的基本關系知識點詳解
★ 高一數學集合知識點匯總
★ 高一數學集合知識點及例題分析
★ 高一數學集合知識點歸納和習題
★ 新課標高一數學集合知識點
Ⅳ 集合的概念知識點歸納有哪些
集合的概念和知識點歸納如下:
1、概念:
集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。
2、地位:
集合在數學領域具有無可比擬的特殊重要性。集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
3、特性:
(1)確定性:
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
(2)互異性:
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
(3)無序性:
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
4、表示方法:
表示集合的方法通常有四種,即列舉法、描述法、圖像法和符號法。
5、運算定律:
(1)交換律:A∩B=B∩A;A∪B=B∪A。
(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。
(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。
(5)同一律:A∪∅=A;A∩U=A。
(6)求補律:A∪A'=U;A∩A'=∅。
(7)對合律:A''=A。
(8)等冪律:A∪A=A;A∩A=A。
(9)零一律:A∪U=U;A∩∅=∅。
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。
集合的容斥原理(特殊情況):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。
以上內容參考:網路-集合
Ⅵ 高一數學集合知識點有哪些
高一數學集合知識點有如下:
一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
二、通常用大寫字母表示集合,用小寫字母表示元素。
三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。
四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。