A. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
B. 網課初中數學最厲害的老師
趙禮顯,大招技巧只教有用的,更擅長基本方法簡單化,注重數學思維的講解,尤其是三角函數簡單直接,數列和函數題型總結的方法讓不少學生少繞彎路;丁益祥全國著名數學特級教師,所輔導過的學生在全國高中數學聯賽中先後有七人獲獎,在《現代高等教育》等文看上發表論文或者文章180餘篇。【點擊注冊領取全科免費課程】
授課風格風默有趣,適合基礎較弱的學生來聽;周帥,省級高考狀元,課程基礎知識講解清晰,側重於數學思維的邏輯培養,由易到難,逐個攻破,選擇的題型也比較簡單,所以很適合一些數學基礎比較差的同學。周帥省級高考狀元,畢業於北京大學,是新東方數學教研組的組長,基礎知識講解清晰,選擇的題型也比較簡單,側重於數學思維邏輯的培養,注重基礎,從易到難,所以基礎一般的同學選擇他完全可以。【感興趣的話點擊此處,免費學習一下】建議到簡單學習網了解一下,互動封閉高清模擬課堂,有權威名師一對一面授課,融電子板書、高清視頻和師生互動於一體,還為學員設立多層次的獎勵體系,是一所國內視頻網校。
C. 初中數學知識點總結
初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
D. 初中數學知識點之基礎知識點總結
初中數學知識點之基礎知識點總結
在年少學習的日子裡,很多人都經常追著老師們要知識點吧,知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。想要一份整理好的知識點嗎?下面是我幫大家整理的初中數學知識點之基礎知識點總結,歡迎大家分享。
初中數學知識點之基礎知識點總結1
一、數與代數A、數與式:1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數無理數:無限不循環小數叫無理數
平方根:
①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。
②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:
①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。
②把同類項合並成一項就叫做合並同類項。
③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
初中數學知識點:直線的位置與常數的關系
①k>0則直線的傾斜角為銳角
②k<0則直線的傾斜角為鈍角
③圖像越陡,|k|越大
④b>0直線與y軸的`交點在x軸的上方
⑤b<0直線與y軸的交點在x軸的下方
初中數學知識點之基礎知識點總結2
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套—————」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
初中數學知識點之基礎知識點總結3
二元二次方程與二元二次方程組以及解法要領的孩子試點已經為大家講完,接下來給大家帶來的知識點內容是數軸,希望同學們了解有向直線和數軸的知識要領了。
數軸
11有向直線
在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相
規定了正方向的直線,叫做有向直線,讀作有向直線l
12數軸
我們把數軸上任意一點所對應的實數稱為點的坐標
對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化
數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值
上面的內容是初中數學知識點之數軸,相信同學們看過以後都可以很好的掌握了吧。如果想要了解更多更全的初中數學知識就來關注吧。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系: 在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對於平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
初中數學知識點:因式分解的一般步驟
關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義 :
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素 :
①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法 :
①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合並。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
;E. 人教版初二數學知識點總結
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
數據的分析
1、平均數
①一般地,對於n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
②一組數據中出現次數最多的那個數據叫做這組數據的眾數。
③平均數、中位數和眾數都是描述數據集中趨勢的統計量。
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。
②數學上,數據的離散程度還可以用方差或標准差刻畫。
③方差是各個數據與平均數差的平方的平均數。
④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。
⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。
八年級 數學知識點歸納
分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的 方法 分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
學好數學的關鍵就在於要適時適量地進行 總結 歸類,接下來我就為大家整理了這篇人教版八年級數學全等三角形知識點講解,希望可以對大家有所幫助。
全等三角形的性質:全等三角形對應邊相等、對應角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
人教版八年級數學全等三角形知識點講解就為大家介紹到這里了,希望大家都能養成善於總結的好習慣。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
初二數學 復習方法 總結
一、初中數學中考復習方法:
數學家華羅庚曾經說過:「聰明在於學習,天才在於勤奮」,勤能補拙是良訓,一分辛勞一分才。
1.復習一定要做到勤
勤動手:做題不要看,一定要算,不會的知識點寫下來,記在 筆記本 上。
勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。
勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。
勤動腦:善於思考問題,積極思考問題——吸收、儲存信息
勤動腿:不要參加過於激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鍾即可,報至狀態。
2.初中數學復習還要強調兩個要點:
一要:動手,二要:動腦。
動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知之間的聯系,多問幾個為什麼,多體會考的哪個知識點。
動手就是多實踐,多做題,要拳不離手曲不離口。同學就是題不離手,這兩個要點大家要記住並且要堅持住。動腦又動手,才能地發揮大腦的效率。這也是老師的 經驗 。
3.用心做到三個一遍
上課要認真聽一遍:聽老師講的方法知識等。
動手算一遍:按照老師的思路算一遍看看是否融會貫通。
認真想一遍:想想為什麼這么做題,考的哪個知識。
4.重視簡單的學習過程
讀好一本教科書它是教學、中考的主要依據;
記好一本筆記方法知識是教師多年經驗的結晶,每人自己准備一本錯題集;
做好做凈一本習題集它是使知識拓寬;
這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復的不就是老師剛剛說的嗎?
沒有寶典神功,只有普普通通。最最難能可貴的是堅持。
資源可以的話,找幾套往屆的期末考試題,是自己縣區的,其他縣區也可以(考點差不多一樣的),在規定時間內,摸摸底,熟悉每個章節考的的題型,練練自己的做題效率。很多同學第一次做練習出錯,如果不及時糾正、 反思 ,而僅僅是把答案改正,那麼他沒有真正地弄明白自己到底錯在什麼地方,也就沒弄明白如何應用這部分知識,最終會導致在今後遇到類似的問題一錯再錯。
人教版初二數學知識點總結相關 文章 :
★ 初二數學知識點歸納上冊人教版
★ 人教版八年級數學上冊知識點總結
★ 初二數學人教版知識點總結歸納
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 人教版初二數學上知識點總結
★ 初二數學上冊知識點總結人教版
★ 人教版初二數學上學期知識點總結
★ 初二數學知識點人教版
★ 人教版初二上數學知識點
F. 小學數學六年級上冊知識點總結
我有教案,上面有,你自己找吧,選我吧。
1.用數對表示物體的位置。
2.在方格紙上用數對確定位置。
分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
例1 倒數的意義
例2 倒數的求法
例1 分數除法的意義
例2 分數除法的計算方法
例3
例4 分數四則混合運算例1 己知一個數的幾分之幾是多少,求這個數的問題
例2 稍復雜的己知一個數的幾分之幾是多少,求這個數的問題
第一小節 比的意義
第二小節 例1 比的基本性質
第三小節 例2 比的應用
認識圓 例1 用一般的物體畫圓
例2 通過折圓的操作活動認識圓
用圓規畫圓
例3 認識圓是軸對稱圖形
圓的周長 探索圓的周長公式、圓周率
例1 圓的周長的計算
圓的面積 探索圓的面積公式
例1 圓的面積計算
例2 圓形的面積計算
G. 關於初中數學知識點總結歸納
數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中數學知識點 總結 歸納,供大家閱讀參考。
初中數學知識點總結歸納
一: 數軸
11 有向直線
在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相
規定了正方向的直線,叫做有向直線,讀作有向直線l
12 數軸
我們把數軸上任意一點所對應的實數稱為點的坐標
對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化
數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值
二:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
三:平面直角坐標系的構成
對於平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
四:點的坐標的性質
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
五:因式分解的一般步驟
關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
六:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定 方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合並。
初中數學知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.
體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
關於初中數學的知識點
一、平移變換:
1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2。性質:(1)平移前後圖形全等;
(2)對應點連線平行或在同一直線上且相等。
3。平移的作圖步驟和方法:
(1)分清題目要求,確定平移的方向和平移的距離;
(2)分析所作的圖形,找出構成圖形的關健點;
(3)沿一定的方向,按一定的距離平移各個關健點;
(4)連接所作的各個關鍵點,並標上相應的字母;
(5)寫出結論。
二、旋轉變換:
1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
(2)旋轉過程中旋轉中心始終保持不動。
(3)旋轉過程中旋轉的方向是相同的。
(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。
2。性質:
(1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等於旋轉角;
(3)旋轉前、後的圖形全等。
3。旋轉作圖的步驟和方法:
(1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
常見考法
(1)把平移旋轉結合起來證明三角形全等;
(2)利用平移變換與旋轉變換的性質,設計一些題目。
誤區提醒
(1)弄反了坐標平移的上加下減,左減右加的規律;
(2)平移與旋轉的性質沒有掌握。
學好數學的方法
1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!
2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到 筆記本 上!保持高效率!
3、俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!
4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!
5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!
總之,學習數學,不要怕難,不要怕累,不要怕問!
初中數學知識點總結歸納相關 文章 :
★ 初中數學基礎知識整理歸納
★ 初中數學知識點總結
★ 初中數學重點知識點的歸納總結
★ 初中數學知識點歸納有哪些
★ 初中數學知識點總結歸納
★ 初中部數學學習方法總結
★ 初中數學圓的知識點歸納
★ 初一數學學習方法總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();H. 一年級數學基本知識點總結
學習需要制定詳細的計劃,計劃本身對大家有較強的約束和督促作用,計劃對學習既有指導作用,又有推動作用。制定好的 學習計劃 ,是提高工作效率的重要手段。下面是我給大家整理的一些 一年級數學 的知識點,希望對大家有所幫助。
一年級數學《20以內退位減法》知識點
方法 一:
「做減想加」或「想加做減」因為8+7=15,所以15-8=7,15-7=8。
「做減想加」或「想加做減」這個計算方法看似簡單,但要求學生思維力,首先要求學生要熟練掌握20以內的加法才能快速的應用「做減想加」或「想加做減」。
方法二:
「破十法」12-5=10-5+2=7
「破十法」這個計算方法如果讓學生自己思考計算方法,它是一個不受歡迎的方法。這方法要在教師的指導下學習學生才能掌握,首先告訴學生3不夠5減時先不減,要找十位借1變成一個10-5得數5再和剩下的2合在一起成了7。
方法三:
「平十法」14-5=14-4-1=9
「平十法」也叫「連續減法」它的特點就在於先把減數拆成補減數的個位和別一個數如:把5拆成4和1,再把14-3=10,最後把10-1=9,這方法的難點在於把減數拆成另外兩個數,一定要拆對。
方法四:
「多減加補」13-9=13-10+1=4
「多減加補」這個方法的特點在於:把減數先湊成10,再用補減數減再加上和9湊成10的那個數1,如:9+1=10,再把13-10+1=4。
方法五:
「將被減數個位上補足成夠減的數」13-5=15-5-2=8
「將被減數個位上補足成夠減的數」這個方法是將被減數的個位補到能被減數減,再接著減去補上的數。如:13-5化成15-5-2=8這樣學生就更容易掌握了。
一年級數學《認識圖形》知識點
一、圖形可分為(1)平面圖形;(2)立體圖形
1、平面圖形:正方形、長方形、三角形、圓、平行四邊形
2、立體圖形:長方體、正方體、圓柱、球
二、圖形的拼組
1、兩個完全一樣的三角形可拼成一個平行四邊形;兩個完全一樣的三角形既可以拼成一個平行四邊形,也可以拼成一個長方形,還可以拼成一個大三角形。
2、拼成一個大正方形至少需要4個小正方形,拼成一個大正方體至少需要8個小正方體。
3、兩個長方形能拼成一個大的長方形。(兩個特殊的長方形能拼成一個大正方形),4個長方體能拼成一個大的長方體。
學習過程
1、教師帶領學生回憶立體圖形的特徵
2、播放微視頻,學生觀看
(課件出示:長方體、正方體、圓柱和球以及三稜柱,播放從立體圖形中「拓」出平面圖形的過程)
3、組織學生利用課前准備學具的不同形狀在練習本子上描、畫、印、拓出平面圖形。畫的又好又快的的同學,可以連麥老師分享他的作品。
4、認識長方形、正方形、圓和三角形
5、認識平行四邊形(引導學生觀察用兩個完全一樣的三角形拼成的平行四邊形)
師:你能把一張正方形、長方形或平行四邊形的紙折成同樣的兩部分嗎?有幾種折法?誰願意介紹自己是怎麼折的?折出來的是什麼圖形?請大家動手做一做,准備好的、同學可以連麥老師哦
6、歸類整理
(1)課件呈現多個圖形,讓學生分別跟家長 說說 每個是什麼圖形?
(2)說一說:你是怎麼記住每種圖形的樣子的?
數學 學習方法 技巧
精心規劃數學活動
新課標特別偏重:「讓學生親身經歷將實踐問題籠統成數學模型並進行闡明與運用的進程」,重視數學常識的構成進程是當時數學課題改造的一個重要理念。
為了讓學生帶著自己原有的常識、經歷走進學習活動,自動建構、了解數學概念,取得數學辦法,取得根究數學的領會,增進學好數學的決計,
例如「1~5的知道」,教材先表現從實踐國際中籠統出數,接著讓學生經過擺小棒進一步領會數的基數意義;知道物體和圖形,教材先以「把形狀相同的放在一起」進步學生對物體形狀的直觀知道,接著出現立體圖形引出物體形狀的稱謂。然後讓學生嘗試用所學的數學常識描繪地址的日子空間……在 教育 中,需求以教材供給的底子資料和學習活動條理,為學生規劃查詢、操作、考慮、溝通等數學活動,讓學生經歷常識構成的進程。
例如教育「1~5的知道」時,由學生去過公園或動物園的事例,創設「去野生動物園」的情境,先請學生查詢、了解有哪些心愛的動物,再請學生把查詢和數的作用通知組內的小夥伴,講給全班同學聽,學生經過查詢、數一數、說一說的活動從實踐國際中籠統出1~5各數。接著,讓學生依據數擺出小棒,或選擇自己喜歡的學具卡片來擺。學生在著手操作中把籠統的數詳細化,加深對1~5各數的基數意義的了解。學生經過看、數、說、做各項活動知道1~5各數,經歷了數概念的構成進程。學生不只領會數的發作和作用、加深對數概念的了解,而且嘗試用數學眼光看周圍事物,並取得成功的領會,增進學好數學的決計。
一年級數學基本知識點 總結 相關 文章 :
★ 一年級數學必考知識點總結
★ 一年級數學知識點梳理
★ 一年級數學知識點難點及學習方法總結
★ 各年級數學學習方法大全
★ 小學一年級數學知識點整理
★ 小學一年級數學知識點
★ 小學一年級數學學習方法指導
★ 小學一年級,數學學習方法與知識點總結
★ 一年級數學上冊知識點學習
★ 小學各年級數學知識點總結
I. 高中數學知識點總結
進入高中之後,數學對於許多學生來說,是一個學習較難的科目,且一些學生在數學這門課上都是越學越不會,那麼高中數學知識點有哪些?下面是我給大家帶來的高中數學知識點 總結 _高中數學知識點最全版,以供大家參考!
▼ 高中數學知識點總結1
1、命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
3、 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
4、反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)
5、反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
6、 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)
▼ 高中數學知識點總結2
1、三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
2、正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
4、 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
不看後悔!清華名師揭秘學好高中數學的 方法
培養興趣是關鍵。學生對數學產生了興趣,自然有動力去鑽研。如何培養興趣呢?
(1) 欣賞數學的美感
比如幾何圖形中的對稱、變換前後的不變數、概念的嚴謹、邏輯的嚴密……
舉個例子,
通過對旋轉變換及其不變數的討論,我們可以證明反比例函數、「對勾函數」的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小於兩個定點之間的距離)的點的集合。
(2)注意到數學在實際生活中的應用。
例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解.
學好數學,是現代公民的 基本素養 之一啊.
(3)採用靈活的教學手段,與時俱進。
利用多種技術手段,聲、光、電多管齊下,老師可以藉此把一些知識講得更具體形象,學生也更容易接受,理解更深。
(4)適當看一些科普類的書籍和 文章 。
比如:學圓錐曲線的時候,可以看看一些建築物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。
▼ 高中數學知識點總結3
1、抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
2、對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
3、向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。
4、並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。
高中數學知識點總結相關文章:
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點全總結最全版
★ 高中數學知識點總結
★ 高中高一數學知識點總結
★ 高一數學知識點全面總結
★ 高中數學知識點全總結
★ 高中數學知識點總結及公式大全
★ 高二數學知識點總結
★ 高中數學知識點歸納最新
★ 高中數學知識點大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();