⑴ 魯教版 小學四年級,五年級數學知識點
小學四年級語文試卷
答卷人;
同學們,轉眼間又是一個學期,又到了我們收獲的季節了。現在就請打開的智慧的頭腦,來採摘這些豐收的果實吧,記住:只要細心,你就是最棒的!!
基礎知識
一、 看拼音,寫詞語。
yú chǔn xī shēng gù zāo tà shuài lǐng
(愚蠢 )(犧牲 ) (固執) (糟蹋)(率領)
biān fu gān zàng wān yán pí bèi jiàn kāng
( 蝙蝠 ) (肝臟 ) (蜿蜒 ) ( 疲憊 ) ( 健康 )
二、我會找出意思相近的幾組對應地寫在括弧里。
拮據 夢寐以求 器重 贈予 困難 疑惑不解
饋贈 日思夜想 看重 悶悶不樂 迷惑不解 愁眉苦臉
(饋贈)--(贈予) (迷惑不解)--(疑惑不解)
(悶悶不樂)--(愁眉苦臉) (夢寐以求)--(日思夜想)
(困難)--(拮據) (器重)--(看重 )
三、把下面的成語補充完整,並選擇你最喜歡的最少兩個寫一兩句話,贊美一個你心目中的英雄。
知(己)知(彼)
所(向)無(敵)
聲(東)擊(西)
四、句子萬花筒。
1、 面對急需幫助的人,我們怎能袖手旁觀呢?(改成陳述句)
答;面對急需幫助的人,我們不能袖手旁觀。
2、禮花綻放。(把句子寫具體)
答;美麗的禮花像花兒一樣綻放 。
2、 湖面很平靜。(改成比喻句)
答;湖面像鏡子一樣平靜
4、樹葉在嘩啦啦地響。(改成擬人句)
答;樹葉在樹林中高聲唱歌。
5、紀昌勤學苦練。紀昌成了百發百中的射箭能手。(用上恰當的關聯詞合成一句話)
答;紀昌通過勤學苦練,終於成了百發百中的射箭能手。
閱讀題
(1) _星期天遇事_
星期天,媽媽帶我上街。我特意拿出生日時姑姑送給我的扣花戴在胸前。這扣花可真漂亮,一顆顆晶瑩的水晶石鑲嵌在金孔雀形的扣花里。動一動,「金孔雀」就閃閃發光,非常惹人喜愛。
街上(人山人海),商場的人更多。我和媽媽好不容易才擠進櫃台。正當我被(五顏六色)的衣料吸引時,肩膀被推了一下。我氣得猛一回頭,沖著推我的那人嚷道:「擠什麼?」沒想到那人不但不惱,反而微笑著對我點點頭,用手指著我的前胸,嘴裡一個勁地「啊,啊……」並招手要我出去。我低頭一看「糟糕!我的扣花沒了!」
我不耐煩地擠出人群。只見那人大約三十來歲,個子不高,眯著一雙不太有神的眼睛。他一見我便迫不及待地將手中的一件東西送到眼前。我接過扣花定睛一看,咦?這難道不是我丟的那枚扣花嗎?我氣呼呼地問:「你這人怎麼隨便拿我的扣花?」那人見我發火,嘴裡一個勁兒地「 啊,啊……」 臉上現出焦急的神情。他一會兒指指我手中的扣花,一會兒又彎腰走幾步,做出撿東西的樣子,好像要告訴我什麼。看他的表情和動作,我明白了他是個聾啞人,是他拾到了我被擠掉的扣花,並交還給我,可我竟……
「芳芳,你怎麼站著發呆?」媽媽的聲音打斷了我的思緒,我忙(四下環顧),人呢?我還沒有感謝他呢,他卻不見了。
我隨媽媽走出商場,一邊走一邊找那個人,希望看到那雙不太有神的眼睛。多麼可敬的聾啞人啊!那(拾金不昧)的高貴品質深深打動了我的心。然而我沒有找見他,只有我手中被汗水浸濕的扣花在陽光照射下熠熠閃光,顯得更加美麗。
1、給短文加個題目。
2.把下面的詞語准確地填寫在文中的( )里。
人山人海 拾金不昧 五顏六色 四下環顧
3是他拾到了我被擠掉的扣花,並交還給我,可我竟……」
①把省略號的意思補充出來:可我竟不管一切的對他亂吼亂叫_____________________
②這里用省略號表達了「我」;很慚愧____________________________
4想一想,假如「我」後來又恰恰碰到了那位聾啞人,「我」會怎麼說,怎麼做呢?請寫一段話。
謝謝你,我不知怎樣感謝你,
那天我不該橫沖直撞的說你,
請你諒解。
妙筆生花
四年的學校生活,你一定經歷過不少事情,有愉快的,有不高興的,有感到委屈的,有……,選擇一件你最想告訴別人的事情寫下來,做到語句通順,條理清楚。題目自擬。要選我啊
小學數學知識匯總——圖形的周長、面積、體積公式及相關知識
★長方形周長 =(長+寬)×2
長方形面積 =長×寬
★正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
★三角形面積 = 底×高÷2
★平行四邊形面積 = 底 × 高
★梯形面積 = (上底 +下底)×高÷2
★圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
★圓的面積等於3.14×半徑的平方。
★環形的面積等於3.14×(大半徑的平方- 小半徑的平方)
★半圓的周長 = 圓的周長的一半 + 直徑 即:∏ r + 2 r
★長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
★長方體的體積 = 長 × 寬 × 高 或 底面積×高
★正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
★圓柱體的表面積=2個底面積 + 側面積
側面積=底面周長×高
★圓柱體的體積 = 底面積 × 高
圓錐體的體積 = 底面積 × 高 ÷ 3
★長方體和正方體都有6個面、8個頂點和12條棱。
★相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
★正方體可以看作是特殊的長方體。
★最少需要8個相同的小正方體才能拼成一個大正方體。
★圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
★圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
★圓錐的底面也是圓形,側面展開是扇形。
★圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
★大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
★在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
★在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
★把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
★長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
★圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
★正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
★圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
★常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
★條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且
能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
小學數學計算公式全集
1. 求正方形的周長~
普通:邊長×4
字母公式:C=a4
2. 求正方形的面積~
普通:邊長×邊長
字母公式:S=aa
3. 求長方形的周長~
普通:(長+寬)×2
字母公式:C=2(a+b)
4. 求長方形的面積~
普通:長×寬
字母公式:S=ab
5. 求圓形的周長~
普通:直徑×圓周率/2×圓周率×半徑
字母公式:C=πd/C=2πr
6. 求圓形的面積~
普通:圓周率×半徑的平方
字母公式:S=πr2
7. 求長方體的表面積~
普通:(長×寬+長×高+寬×高)×2
字母公式:S表=2(ab+ah+bh)
8. 求長方體的體積~
普通:長×寬×高
字母公式:V=abh
9. 求正方體的表面積~
普通:邊長×邊長×6
字母公式:S表=aa6
10. 求正方體的體積~
普通:邊長×邊長×邊長
字母公式:V=aaa
11. 求三角形的面積~
普通:底×高÷2
字母公式:ah÷2
12. 求梯形的面積~
普通:(上底+下底)×高÷2
字母公式:(a+b)h÷2
13. 求半圓的面積~
普通:圓周率×半徑的平方÷2
字母公式:S=πr2÷2
14. 求平行四邊形的面積~
普通:底×高
字母公式:S=ah
15. 求圓柱的側面積~
普通:圓柱底周長×高
字母公式:S側=Ch
16. 求圓柱的面積~
普通:圓周率×半徑的平方×高
字母公式:πr2h
17. 求圓椎的面積~
普通:三分之一×圓椎底面積×高/三分之一×圓周率×半徑的平方
字母公式:1/3Sh / 1/3πr2h
版本二
語文:
認識2000~5000個基本的字、詞的理解與運用、理解文章內容並概括中心思想、能寫400字記敘文
數學:
(正)整數、小數、分數、百分數的四則運算及應用題
長度、面積、體積、時間、人民幣單位的認識
線段和角的認識
正方形、長方形、平行四邊形、圓的周長計算
正方形、長方形、平行四邊形、三角形、梯形、圓、環形、*扇形以及組合圖形的面積計算
正方體、長方體、圓柱的表面積計算
正方體、長方體、圓柱、圓錐的體積計算
*球的認識
簡單的統計
比的認識和應用
正比例和反比例的認識和應用
(帶*的是選學內容)
英語:
掌握近1000個簡單的單詞、掌握一般現在時、現在進行時的用法
⑵ 魯教版五年級下冊數學一單元怎麼預習
1.小數乘整數的意義:求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。 2.小數乘法法則
先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。 3.小數除法
小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
4.除數是整數的小數除法計演算法則
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。 5.除數是小數的除法計演算法則
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
6.積的近似數:
四捨五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。 7.數的互化 (1)小數化成分數
原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
(2)分數化成小數
用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3)化有限小數
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
(4)小數化成百分數
只要把小數點向右移動兩位,同時在後面添上百分號。
(5)百分數化成小數
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(6)分數化成百分數
通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
(7)百分數化
(3)化有限小數
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
(4)小數化成百分數
只要把小數點向右移動兩位,同時在後面添上百分號。
(5)百分數化成小數
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(6)分數化成百分數
通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
(7)百分數化成小數
先把百分數改寫成分數,能約分的要約成最簡分數。 8.小數的分類
(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 „„ 3.1415926 „„
(3)無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。
(4)循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 „„ 0.0333 „„ 12.109109 „„;一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 „„的循環節是「 9 」 ,0.5454 „„的循環節是「 54 」 。
9. 循環節:如果無限小數的小數點後,從某一位起向右進行到某一位止的一節數字循環出現,首尾銜接,稱這種小數為循環小數,這一節數字稱為循環節。把循環小數寫成個別項與
成小數
13.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。 (2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。 14.解方程:解方程,求方程的解的過程叫做解方程。 15.列方程解應用題的意義:
用方程式去解答應用題求得應用題的未知量的方法。 16.列方程解答應用題的步驟
(1)弄清題意,確定未知數並用x表示; (2)找出題中的數量之間的相等關系; (3)列方程,解方程; (4)檢查或驗算,寫出答案。 17.列方程解應用題的方法
(1)綜合法
先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。
(2)分析法
先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
18.列方程解應用題的范圍 :小學范圍內常用方程解的應用題: (1)一般應用題;
10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程
⑶ 五年級下冊數學重點
五年級下冊數學知識要點:
第一單元:圖形的變換
1. 軸對稱圖形:一個圖形沿一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。這條直線叫做它的對稱軸。
2. 軸對稱圖形的特徵:1、對稱點到對稱軸的距離相等;2、對應點連線與對稱軸互相垂直。
3. 旋轉:圖形或物體繞著一個點或一條軸運動的現象叫做旋轉。
第二單元:因數與倍數
1. 因數和倍數:在整數乘法里,如果a×b=c,那麼a和b是c的因數,c是a和b的倍數。
2. 為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0)。但是0也是整數。
3. 一個數的最小因數是1,最大因數是它本身。一個數的因數的個數是有限的。
4. 一個數的最小倍數是它本身,沒有最大的倍數。 一個數的倍數的個數是無限的。
5. 個位上是0、2、4、6、8的數都是2的倍數。個位上是0、5的數都是5的倍數。一個數,每個數位上的數的和是3的倍數,這個數就是3的倍數。
6. 自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
7. 最小的奇數是1,最小的偶數是0。最小的質數是2,最小的合數是4。
8.
四則運算中的奇偶規律:
奇數+奇數=偶數 奇數-奇數=偶數 奇數×奇數=奇數
偶數+偶數=偶數 偶數-偶數=偶數 偶數×偶數=偶數
奇數+偶數=奇數 奇數-偶數=奇數 奇數×偶數=偶數
偶數-奇數=奇數
9. 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);如果除了1和它本身還有別的因數,這樣的數叫做合數。
10. 1既不是質數,也不是合數。
11. 自然數按照因數的個數多少,可以分為1、質數、合數;按是否是2的倍數,可以分為奇數、偶數。
12. 100以內的質數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三單元:長方體和正方體
1. 正方體也叫立方體。
2. 長方體的特徵是:①長方體有6個面;②每個面都是長方形(特殊情況下有兩個相對的面是正方形);③相對的面完全相同;④有12條棱;⑤相對的棱長度相等;⑥有8個頂點。
3. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
4. 正方體可以看成是長、寬、高都相等的長方體。正方體是特殊的長方體。
5. 正方體的特徵是:①正方體有6個面;②每個面都是正方形;③所有的面都完全相同;④有12條棱;⑤所有的棱長度都相等;⑥有8個頂點。
6. 長方體的棱長總和=(長+寬+高)×4
7. 正方體的棱長總和=棱長×12
8. 長方體六個面的面積總和叫做長方體的表面積。
9. 上面或下面面積=長×寬;前面或後面面積=長×高;左面或右面面積=寬×高。
10. 長方體的表面積=(長×寬+長×高+寬×高)×2
11. 正方體的表面積=棱長2×6
12. 「有兩個相對的面是正方形」的長方體表面積=正方形面的面積×2+長方形面的面積×4
13. 長方體的側面積=底面周長×高
14. 物體所佔空間的大小,叫做物體的體積。
15. 常用的體積單位有立方厘米,立方分米和立方米,可以分別寫成cm3,dm3,和m3。
16. 棱長是1cm的正方體,體積是1cm3;棱長是1dm的正方體,體積是1dm3;棱長是1m的正方體,體積是1m3。
17. 長方體的體積=長×寬×高;用字母表示是V=abh
18. 正方體的體積=棱長3;用字母表示是V=a3
19. 長方體(或正方體)的體積=底面積×高=橫截面積×長
20. 在工程上,1立方米簡稱1方。
21. 1個長方體或正方體,如果所有的棱長都擴大n倍,那麼棱長總和也擴大n倍,表面積擴大n2倍,體積擴大n3倍。
22. 棱長總和相等的長方體或正方體,正方體的體積最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相鄰兩個長度單位間的進率是10;每相鄰兩個面積單位之間的進率是100;每相鄰兩個體積單位之間的進率是1000。
25. 容器所能容納物體的體積,通常叫做它們的容積。計量容積,一般就用體積單位。
26. 計量液體的體積,常用的容積單位是升和毫升,也可以寫成L和ml。
27. 1升相當於1立方分米,1毫升相當於1立方厘米,所以1升=1000毫升。
28. 長方體或正方體容器容積的計算方法,跟體積的計算方法相同,但要從容器裡面量長、寬、高。所以容器的容積比體積要小一些。
29. 浸沒在水中的物體的體積=現在水的體積-原來水的體積=容器的長×容器的寬×水面上升的高度
30. 怎樣測量一個不規則的物體的體積呢?先在量杯里裝上適量的水,記下水面對應的刻度,再把物體浸沒在水中,再記下新的水面對應刻度。兩次刻度的差,就是這個不規則物體的體積。
第四單元:分數的意義和性質
1. 一個物體或是幾個物體組成的一個整體都可以用自然數1來表示,我們通常把它叫做單位「1」。
2. 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。例如3/7表示把單位「1」平均分成7份,取其中的3份。
3. 5/8米按分數的意義,表示:把1米平均分成8份,取其中的5份。按分數與除法的關系,表示:把5米平均分成8份,取其中的1份。
4. 把單位「1」平均分成若干份,表示其中一份的數叫分數單位。
5. 分數和除法的關系是:分數的分子相當於除法中的被除數,分數的分數線相當於除法中的除號,分數的分母相當於除法中的除數,分數的分數值相當於除法中的商。
6. 把一個整體平均分成若干份,求每份是多少,用除法。總數÷份數=每份數。
7. 求一個數量是另一個數量的幾分之幾,用除法。一個數量÷另一個數量=幾分之幾(幾倍)。
8. 分子比分母小的分數叫真分數。真分數小於1。
9. 分子比分母大或分子和分母相等的分數叫做假分數。假分數大於1或等於1。
10. 帶分數包括整數部分和分數部分,分數部分應當是真分數。帶分數大於1。
11. 把假分數化成帶分數的方法是用分子除以分母,商是整數部分,余數是分子,分母不變。把帶分數化成假分數的方法是用整數部分乘分母的積加原來的分子作分子,分母不變。
12. 整數可以看成分母是1的假分數。例如5可以看成是5/1。
13. 分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。
14. 幾個數公有的因數叫做這幾個數的公因數,其中最大的公因數叫作它們的最大公因數。最小公因數一定是1。
15. 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的公倍數叫作它們的最小公倍數。沒有最大的公倍數。
16. 求最大公因數或最小公倍數可以用列舉法,也可以用短除法分解質因數。
17. 公因數只有1的兩個數叫做互質數。分子和分母是互質數的分數叫做最簡分數。最簡分數不一定是真分數。
18. 除法計算的結果可以用分數表示,比較方便。如果計算結果可以約分的話,要化簡成最簡分數。
19. 如果兩個數是倍數關系,那麼它們的最大公因數是較小的數,最小公倍數是較大的數。
20. 如果兩個數是互質關系,那麼它們的最大公因數是1,最小公倍數是它們的積。
21. 數A×數B=它們的最大公因數×它們的最小公倍數。
22. 兩個數是互質數的幾種特殊情況有:1、1和任何數都是互質數;2、兩個相鄰的自然數一定是互質數;3、兩個相鄰的奇數一定是互質數;4、兩個不同的質數一定是互質數;5、一個質數和一個不是它倍數的合數一定是互質數。
23. 把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。把幾個異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
24. 把分數化成小數的方法是用分子除以分母;把小數化成分數的方法是先寫成分母是10、100……的分數,然後再進行約分。
25. 如果一個最簡分數的分母除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數。
26. 兩個數的最大公因數等於兩個數公有的質因數的積;兩個數的最小公倍數等於兩個數公有的質因數×它們各自獨有的質因數。
27. 兩個數的公因數,都是這兩個數的最大公因數的因數;兩個數的公倍數,都是這兩個數的最小公倍數的倍數。
此資料來源於網路。希望對你有幫助。
⑷ 五年級下冊數學必背知識點有哪些
五年級下冊數學必背知識點如下:
1、一個數的倍數的特徵:一個數的倍數的個數是無限的,其中最少的倍數是它本身,沒有最大的倍數;如果幾個數都是一個數的倍數,那麼這幾個數的合也是這個數的倍數。
2、在整數除法中,如果商是整數而沒有餘數,我們就說被除數是除數的倍數,除數是被除數的因數。
3、一般的如果a是整數,偶數可以用2a表示。奇數可以用2a+1表示。
4、自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫奇數。最小的偶數是0,最小的奇數是1。
5、一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);1不是質數,也不是合數。
⑸ 五年級下冊的數學每個單元都講一下重點知識
五年級下冊的數學每個單元重要知識點
第一單元 圖形的變換:畫軸對稱圖形,及將簡單圖形以旋轉90度;靈活運用平移、對稱、和旋轉在方格上設計圖案。
第二單元 因數與倍數:掌握因數和倍數、質數和合數、奇數和偶數等概念,及掌握2、3、5倍數的特徵。
第三單元 長方體和正方體:探索它們的特徵,並掌握求它們的表面積和體積。知道容積的意義及測量,並運用體積公式來求物體的容積。
第四單元 分數的意義和性質:理解分數的意義和性質,會比較分數的大小,會把假分數化帶分數或整數,會進行整數和小數的互化。
第五單元 分數加法和減法:掌握計算方法,並能解決有關分數加、減法的簡單實際問題。
第六單元 統計:認識復式的折線統計圖,能根據需要選擇合適的統計圖表示數據。會求一組數中的眾數。
第七單元 數學廣角體會解決問題的策略的多樣性及運用優化的數學思想方法解決問題的有效性,感受數學魅力。
⑹ 五年級數學下冊的重點
五年級下冊數學知識要點:
第一單元:圖形的變換
1. 軸對稱圖形:一個圖形沿一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。這條直線叫做它的對稱軸。
2. 軸對稱圖形的特徵:1、對稱點到對稱軸的距離相等;2、對應點連線與對稱軸互相垂直。
3. 旋轉:圖形或物體繞著一個點或一條軸運動的現象叫做旋轉。
第二單元:因數與倍數
1. 因數和倍數:在整數乘法里,如果a×b=c,那麼a和b是c的因數,c是a和b的倍數。
2. 為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0)。但是0也是整數。
3. 一個數的最小因數是1,最大因數是它本身。一個數的因數的個數是有限的。
4. 一個數的最小倍數是它本身,沒有最大的倍數。 一個數的倍數的個數是無限的。
5. 個位上是0、2、4、6、8的數都是2的倍數。個位上是0、5的數都是5的倍數。一個數,每個數位上的數的和是3的倍數,這個數就是3的倍數。
6. 自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
7. 最小的奇數是1,最小的偶數是0。最小的質數是2,最小的合數是4。
8.
四則運算中的奇偶規律:
奇數+奇數=偶數 奇數-奇數=偶數 奇數×奇數=奇數
偶數+偶數=偶數 偶數-偶數=偶數 偶數×偶數=偶數
奇數+偶數=奇數 奇數-偶數=奇數 奇數×偶數=偶數
偶數-奇數=奇數
9. 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);如果除了1和它本身還有別的因數,這樣的數叫做合數。
10. 1既不是質數,也不是合數。
11. 自然數按照因數的個數多少,可以分為1、質數、合數;按是否是2的倍數,可以分為奇數、偶數。
12. 100以內的質數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三單元:長方體和正方體
1. 正方體也叫立方體。
2. 長方體的特徵是:①長方體有6個面;②每個面都是長方形(特殊情況下有兩個相對的面是正方形);③相對的面完全相同;④有12條棱;⑤相對的棱長度相等;⑥有8個頂點。
3. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
4. 正方體可以看成是長、寬、高都相等的長方體。正方體是特殊的長方體。
5. 正方體的特徵是:①正方體有6個面;②每個面都是正方形;③所有的面都完全相同;④有12條棱;⑤所有的棱長度都相等;⑥有8個頂點。
6. 長方體的棱長總和=(長+寬+高)×4
7. 正方體的棱長總和=棱長×12
8. 長方體六個面的面積總和叫做長方體的表面積。
9. 上面或下面面積=長×寬;前面或後面面積=長×高;左面或右面面積=寬×高。
10. 長方體的表面積=(長×寬+長×高+寬×高)×2
11. 正方體的表面積=棱長2×6
12. 「有兩個相對的面是正方形」的長方體表面積=正方形面的面積×2+長方形面的面積×4
13. 長方體的側面積=底面周長×高
14. 物體所佔空間的大小,叫做物體的體積。
15. 常用的體積單位有立方厘米,立方分米和立方米,可以分別寫成cm3,dm3,和m3。
16. 棱長是1cm的正方體,體積是1cm3;棱長是1dm的正方體,體積是1dm3;棱長是1m的正方體,體積是1m3。
17. 長方體的體積=長×寬×高;用字母表示是V=abh
18. 正方體的體積=棱長3;用字母表示是V=a3
19. 長方體(或正方體)的體積=底面積×高=橫截面積×長
20. 在工程上,1立方米簡稱1方。
21. 1個長方體或正方體,如果所有的棱長都擴大n倍,那麼棱長總和也擴大n倍,表面積擴大n2倍,體積擴大n3倍。
22. 棱長總和相等的長方體或正方體,正方體的體積最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相鄰兩個長度單位間的進率是10;每相鄰兩個面積單位之間的進率是100;每相鄰兩個體積單位之間的進率是1000。
25. 容器所能容納物體的體積,通常叫做它們的容積。計量容積,一般就用體積單位。
26. 計量液體的體積,常用的容積單位是升和毫升,也可以寫成L和ml。
27. 1升相當於1立方分米,1毫升相當於1立方厘米,所以1升=1000毫升。
28. 長方體或正方體容器容積的計算方法,跟體積的計算方法相同,但要從容器裡面量長、寬、高。所以容器的容積比體積要小一些。
29. 浸沒在水中的物體的體積=現在水的體積-原來水的體積=容器的長×容器的寬×水面上升的高度
30. 怎樣測量一個不規則的物體的體積呢?先在量杯里裝上適量的水,記下水面對應的刻度,再把物體浸沒在水中,再記下新的水面對應刻度。兩次刻度的差,就是這個不規則物體的體積。
第四單元:分數的意義和性質
1. 一個物體或是幾個物體組成的一個整體都可以用自然數1來表示,我們通常把它叫做單位「1」。
2. 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。例如3/7表示把單位「1」平均分成7份,取其中的3份。
3. 5/8米按分數的意義,表示:把1米平均分成8份,取其中的5份。按分數與除法的關系,表示:把5米平均分成8份,取其中的1份。
4. 把單位「1」平均分成若干份,表示其中一份的數叫分數單位。
5. 分數和除法的關系是:分數的分子相當於除法中的被除數,分數的分數線相當於除法中的除號,分數的分母相當於除法中的除數,分數的分數值相當於除法中的商。
6. 把一個整體平均分成若干份,求每份是多少,用除法。總數÷份數=每份數。
7. 求一個數量是另一個數量的幾分之幾,用除法。一個數量÷另一個數量=幾分之幾(幾倍)。
8. 分子比分母小的分數叫真分數。真分數小於1。
9. 分子比分母大或分子和分母相等的分數叫做假分數。假分數大於1或等於1。
10. 帶分數包括整數部分和分數部分,分數部分應當是真分數。帶分數大於1。
11. 把假分數化成帶分數的方法是用分子除以分母,商是整數部分,余數是分子,分母不變。把帶分數化成假分數的方法是用整數部分乘分母的積加原來的分子作分子,分母不變。
12. 整數可以看成分母是1的假分數。例如5可以看成是5/1。
13. 分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。
14. 幾個數公有的因數叫做這幾個數的公因數,其中最大的公因數叫作它們的最大公因數。最小公因數一定是1。
15. 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的公倍數叫作它們的最小公倍數。沒有最大的公倍數。
16. 求最大公因數或最小公倍數可以用列舉法,也可以用短除法分解質因數。
17. 公因數只有1的兩個數叫做互質數。分子和分母是互質數的分數叫做最簡分數。最簡分數不一定是真分數。
18. 除法計算的結果可以用分數表示,比較方便。如果計算結果可以約分的話,要化簡成最簡分數。
19. 如果兩個數是倍數關系,那麼它們的最大公因數是較小的數,最小公倍數是較大的數。
20. 如果兩個數是互質關系,那麼它們的最大公因數是1,最小公倍數是它們的積。
21. 數A×數B=它們的最大公因數×它們的最小公倍數。
22. 兩個數是互質數的幾種特殊情況有:1、1和任何數都是互質數;2、兩個相鄰的自然數一定是互質數;3、兩個相鄰的奇數一定是互質數;4、兩個不同的質數一定是互質數;5、一個質數和一個不是它倍數的合數一定是互質數。
23. 把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。把幾個異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
24. 把分數化成小數的方法是用分子除以分母;把小數化成分數的方法是先寫成分母是10、100……的分數,然後再進行約分。
25. 如果一個最簡分數的分母除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數。
26. 兩個數的最大公因數等於兩個數公有的質因數的積;兩個數的最小公倍數等於兩個數公有的質因數×它們各自獨有的質因數。
27. 兩個數的公因數,都是這兩個數的最大公因數的因數;兩個數的公倍數,都是這兩個數的最小公倍數的倍數。
希望我的回答能對你有所幫助咯。。。(*^__^*) 嘻嘻……
⑺ 五年級下冊數學知識點
一、填空
(1)9200dm3=( )m3
(2)2.4L=( )mL
(3)一個正方體棱長5dm,這個正方體校長之和是( )dm,它的表面積是( )dm2.
(4)把238分解質因數(238= )
(5)a和b都是自然數,a÷b=3,(a、b)=( )[a、b]=( )
(6)35和7,( )能被( )整除,( )是( )的倍數,( )是( )的約數.
(7)36的約數有( ).
(8)三個連續奇數的和是21,這三個奇數分別是( )、( )、( ),它們的最小公倍數是( ).
(9)一個長方體的體積是48m3,長是8m、寬是5m、高是( )m.
(10)一個長方體的高減少5cm,表面積減少100cm2,剩下是一個正方體,這個正方體的表面積是( )厘米2.
二、判斷,對的畫「√」,錯的畫「×」
(1)能被2整除的數都是合數. ( )
(2)小於100的最大合數是98. ( )
(3)48既能被8整除,又能被6整除,所以48是8和6的最小公倍數.( )
(4)長方體最多有4個面的面積相等. ( )
三、選擇正確答案的字母填在括弧內
(1)1、2、3、4、6都是12的________.
A.質數
B.約數
C.質因數
(2)正方體的棱長擴大2倍,體積就擴大________倍.
A.2
B.4
C.8
(3)下面的圖形中,有一個不是正方體的展開圖,它的編號是________.
四、計算下面各題(能簡算的要簡算)
(1)1.25×0.85×8-4.23-3.77
(2)67.05×101-67.05
(3)(52.8-4.56÷0.2)×0.25
(4)1.952÷0.64+2.25×0.72
五、用短除的形式求下面各組數的最大公約數
(1)42和70
(2)24和60
六、用短除的形式求下面各組數的最小公倍數
(1)14和12
(2)6、15和40
七、應用題
(1)一個鐵桶(帶蓋),底面是邊長0.6m的正方形,高1m,在桶的四周貼上商標紙,所貼商標紙的面積至少是多少平方米?
(2)有一個正方體水箱,從裡面量每邊長5dm,如果一滿箱水倒入一個長0.8m、寬25cm的長方體水池內,水深多少分米?
(3)化工廠有三個車間,一車間2.4小時,平均每小時生產化肥5.4t,二車間2.5小時,平均每小時生產化肥6.4t,三車間2.6小時共生產化肥15.29t,這三個車間平均每小時生產化肥多少噸?
(4)填表
根據上表填空.( )年級平均每人植樹最多.
參考答案
一、(1)9.2
(2)2400
(3)60、150
(4)238=2×7×17
(5)b、a
(6)35、7、35、7、7、35
(7)1、2、3、4、6、9、12、18、36
(8)5、7、9、315
(9)1.2
(10)150
二、(1)× (2)× (3)× (4)√
三、(1)B (2)C (3)B
四、(1)0.5 (2)6705 (3)7.5 (4)4.67
五、(1)14 (2)12
六、(1)84 (2)120
七、(1)0.6×1×4=2.4
(2)5×5×5÷(8×2.5)=6.25
(3)(5.4×2.4+6.4 ×2.5+15.29)÷(2.4+2.5+2.6)=5.9
(4)1140÷222≈5.14
⑻ 五年級下冊數學必背知識點有哪些
五年級下冊數學必背知識點如下:
1、一個數的倍數的特徵:一個數的倍數的個數是無限的,其中最少的倍數是它本身,沒有最大的倍數;如果幾個數都是一個數的倍數,那麼這幾個數的合也是這個數的倍數。
2、在整數除法中,如果商是整數而沒有餘數,我們就說被除數是除數的倍數,除數是被除數的因數。
3、一般的如果a是整數,偶數可以用2a表示。奇數可以用2a+1表示。
4、自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫奇數。最小的偶數是0,最小的奇數是1。
5、一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);1不是質數,也不是合數。
⑼ 五年級下冊數學知識點歸類
這會不會有點多,我打字慢
⑽ 小學五年級下數學知識點
5下的
1. 理解分數的意義;*
2. 思考,並會用長方體,正方體的表面積,體積運算公式。*
3. 做好統計,並學會做統計表,會看統計表!
(以上都很重要,打星號的特別重要)
做些題吧
一.填空。
1.自然數中,既不是質數,又不是合數的數是 ( ),最小的質數是 ( ),最小的合數是 ( )。
2.把120分解質因數是( )。
3.兩個互質數,又都是合數,它們的最小公倍數是60,這兩個數分別是 ( ) 和 ( )。
4.a和b是一對互質數,a×b =36,則a和b分別是( )
5.一個三位數,它的個位上是最小的自然數,十位上是最小合數,百位上是最小的質數,這個三位數是( )。
6.一個長方體的長為1分米,寬為8厘米,高為3厘米,它的表面積是( ),體積是( )。
7.用一根長為48厘米的鐵絲製成一個最大的正方體框架,它的表面積是( )平方厘米,體積是( )立方厘米。
8.已知一個三角形的面積是24平方厘米 , 底是8厘米,高是( )厘米。
9.把一根長2米的長方體木料,平均鋸成4段,表面積比原來增加了48平方分米,原來這根木料的體積是( )立方分米。
10.已知一個梯形的面積是36平方厘米,高為4厘米,上底與下底的和是( )。
11.已知甲數=3×3×5×7, 乙數=3×5×7×11, 甲乙兩數的最大公約數是( )。
12.把下面各數按要求填。
6 9 102 45 110 91 780 248 37
奇數( ) 能被2整除( )
偶數( ) 能被3整除( )
質數( ) 能被5整除( )
合數( ) 能被2、3、5整除( )
二.判斷。
1.長方體的棱長之和是84厘米,從一個頂點出發的三條棱的長度之和是21厘米。 ( )
2.7.2除以一個小數,所得的商一定大於7.2。 ( )
3.沒有公約數的兩個數叫做互質數。 ( )
三.選擇題。
1、如果m、 n 都是自然數,m = 8n,則m和n的最小公倍數是 ( )。
A、m B、n C、mn D、8
2、下面的各組數里,第一個數能被第二數整除的是 ( ) 。
A、36和0.9 B、7和56 C、54和27 D、84和8
3、如果兩個自然數的最小公倍數是210,它們的最小公約數是14,那麼這兩個數是 ( )。
A、140和21 B、42和70 C、10和21 D、14和35
4、若m÷n = 13, m ,n 都是自然數,則m是n的( ),n是m的( )。
A. 最小公約數 B. 最大公約數 C. 最大公倍數 D. 最小公倍數
5、99.999保留兩位小數是 ( )。
A.99.99 B.100 C.100.00 D.100.0
6、相鄰兩個自然數的和一定是( ),積一定是( )。
A. 奇數 B. 偶數 C. 合數 D. 質數
四.計算。
1.計算,能簡算的要簡算。
6.71×7.5 + 2.5×6.71 ( 3.12 + 0.3 )÷[ ( 1-0.4 )÷0.2 ]
3.14×625-3.14×374-3.14 [ 41-( 4.2 + 5.8÷5 ) ]÷0.9
3.4÷4.41 + 0.4×0.05 12.5×3.2×0.25×1.3
2.直接寫出得數。
5.2-3 + 8= 2.9 + 4.1 = 1÷0.05 = 8×0.5 = 3.29÷3.29 =
8.9 + 8.9 = 2-3.6 = 8.8-0.8 = 4.8÷1.6 = 0×(4-0.4 ) =
3.解方程。
6x-0.4×6 = 9.6 118-2×( 4.1 + X ) = 55 4x +80 = 160
9.6÷X = 0.8 4.8-X = 3×( X + 6 ) 4.3X-1.5 + 3.2X = 4.5
4.求陰影部分面積。
5厘米
3厘米
五.列式計算。
1.一個數減去3.6,所得的差的5 倍,正好等於這個數的3倍,求這個數。
2.乙數比丙數的2倍少3,甲數是乙數的4倍,已知甲數是132,求丙數。
3.2.5與64的積去除 1.44,商是多少?
4.一個數的5倍比40除以5的商少48,求這個數。(用方程解)
六.應用題。
1.只列式不計算 。
(1)工程隊修一條長480米的路,計劃12天完成。實際10天就完成了,實際每天比計劃多修多少米? 算式:____________________
(2) 小華前2次數學測驗的平均成績是91分,後3次測驗平均成績是90分。求他這5次測驗的平均成績。 算式:_____________________
2.李紅和王剛買同一種練習本5本和3本,已知李紅比王剛多付7.20元,這種練習本的單價是多少元?
3.甲乙兩位運動員練習賽跑,甲每秒跑7米,乙每秒跑6.5米。如果讓乙先跑出10米後,甲再出發,幾秒鍾後甲追上乙?(用方程解)
4.甲車每小時行50千米,乙車每小時行56千米,兩車從相距20千米的兩地相背而行,幾小時後兩車相距274.4千米?
5.一個游泳池長50米,寬30米,深3.5米。在游泳池的四壁和底部鋪上邊長1分米的方磚,共需方磚多少塊?如果將這個游泳池放滿水,能放水多少立方米?
6.果園里有桃樹730棵,比梨樹的1.25倍少20棵,果園有梨樹和桃樹共多少棵?
7.工程隊要築一條長7.4千米的公路,已經築了12天,平均每天築0.35千米,剩下的要在8天內完成,平均每天至少要築多少千米?
五年級下冊數學期末試卷
一.填空題 。
1、24的所有約數有( )個,24的最小倍數是( )。
2、在自然數1--20中,既是偶數又是質數的有( );既是奇數又是合數的有( )。
3、a和b的最大公約數是1,最小公倍數是( )。
4、一個正方體的棱長擴大3倍,體積就擴大( )倍,表面積擴大( )倍。
5、3升60毫升 =( )升 =( )毫升。
6、甲數 = 2×3×5×7 乙數 = 2×5×11
則兩數的最大公約數是( ),最小公倍數是( )
7、把96分解質因數是( )。
8、把4米長的木棒平均分成7段,每段長 )米,每段佔全長的( )。
9、 =( )÷15 = 15÷( )=
10、分數單位是 的最大真分數是(),最小假分數是( ),最小帶分數是( )
11、1裡面有( ),2裡面有( )。
2 的分數單位是( ),20個這樣的分數單位是( )。
12.李明今年a歲,張亮今年a + b歲;5年後,兩人的年齡相差( )歲。
13.已知a = 2.3,b = 5;則8a-b + 2a的值是( )。
14.兩個數的積是72,它們的最小公倍數是36,這兩個數的和最小是( )。
15.有周長都是36厘米的正方形和長方形,長方形的長是寬的3倍。它們的面積相差( )平方厘米。
二 判斷(對的打√,錯的打×)
1、長方體相鄰的面沒有完全相同的。 ( )
2、兩個數的公倍數必定比這兩個數都大。( )
3、任何整數,必定都有兩個約數。 ( )
4、兩個合數一定不是互質數。 ( )
5、是最簡分數。 ( )
6、因為比小,所以的分數單位比的分數單位小。 ( )
7. 2.12和18的最小公倍數是這兩個數的最大公約數的6倍。 ( )
8.沿著等腰三角形底邊上的高剪開,可以把等腰三角形分成兩個相等的直角三角形。 ( )
三 選擇(把正確答案的序號填在括弧里) 。
1、把一個長方體割成許多小正方體,它的體積( ),表面積( )
① 不變 ② 增加 ③ 減少
2、一個長方體是8厘米,寬是6厘米,高是4厘米,它的棱長和是( )厘米。 ① 18 ② 36 ③ 72
3、1立方米的正方體以分成( )個1立方分米的小正方體。
①1000個 ②100個 ③10個
4、下面各數中,兩個數都是合數又是互質數的數是( )。
①16和12 ②27和28 ③11和44
5、下面各數中,不能化成有限小數的是( )
① ② ③
四 文字題。
1.3與1的和,加上2,等於多少?
2. 5減去2所得的差加上3,和是多少?
六.應用題
1.某氣象小組在一天中的2時、8時、16時和20時分別測得氣溫是18度、20度、28度和26度。求這一天的平均氣溫。
2.新河鄉修了一條水渠,第一天修了58.5米,比第二天修的3倍多4 ,第二天修了多少米。
3.倉庫存有一批貨物,運走了45噸,比剩下的多20.3噸,這批貨物共有多少噸?
4.一根長24米的電線,用去了16米,用去了全長的幾分之幾?還剩下全長的幾分之幾?
5.用鐵皮做一個長方體油箱,油箱的長8分米,寬6分米,高5分米。至少要用鐵皮多少平方分米?如果每立方米油重0.82千克。那麼,這個油箱最多可裝柴油多少千克?
6.一輛汽車從甲地開往乙地,每小時行50千米,6小時到達;返回時,每小時行60千米,幾小時可以到達?
7.一個長方體的魚缸,從裡面量長6分米、高5分米、寬4分米,現在往魚缸內注入96升水,水面離魚缸的沿口有多少分米?
五年級下冊數學期末試卷
一.填空.
1.8平方米8平方分米=( )平方米 =( )平方分米
2.6700米=( )千米( )米 =( )千米
3.用鐵絲焊接成一個長10厘米,寬6厘米的長方體框架,至少需要( )厘米鐵絲.
4.把3個1立方厘米的小正方體木塊拼成一個長方體木塊,這個長方體木塊的體積是( ),表面積是( )
5. 從0, 1, 2, 4四個數字中分別選擇三個數字, 組成同時能被2, 5, 3整除的最大三位數是( ), 最小三位數是( ).
6.( ) 除以13商5餘2.
7.商是21, 如果被除數縮小10倍, 除數擴大10倍, 那麼商是( ).
8.在8的後面添上一個零, 這個數比原數多( ), 這個數比原數多( )倍
9.把3米長的線段平均分成5份,每份長用分數表示是( )米,用小數表示是( )米.
10. 和 這兩個分數中,分數值較大的數是( ),分數單位較大的數是( ).
11. 的分數單位是( ),再添上( )個這樣的分數單位就是最小質數.
12. 兩個兩位數,它們的最大公約數是9,最小公倍數是360,這兩個兩位數分別是
( )和( ).
13.把2米長的鐵絲截成相等的3段,每段佔全長的( ),每段長( )米.
14.16和24的最小公倍數是( ),把這個數用質數相乘的形式表示是( ).
二.判斷題.
1.2.4÷0.3 = 8, 因為商是整數而且沒有餘數, 所以2.4能被0.3整除. ( )
2.小數比整數小. ( )
3.質數中只有2是偶數,其餘都是奇數 . ( )
4.相鄰的兩個自然數一定是互質數. ( )
5.一個數的計數單位越大,這個數就越大. ( )
6.甲繩比乙繩長米,乙繩就比甲繩短. ( )
三.選擇題.
1.13÷2 = 6.5, 我們說13能被2. A. 整除 B. 除盡 [ ]
2.一個正方體的棱長是a ,它的表面積是 [ ]
A.12a B.6a2 C.a2 D.a3
3.自然數中最小的一個數是A. 0 B. 1 [ ]
4.的分母增加15,要使分數大小不變,分子應擴大 ( ).
A. 4倍 B. 3倍 C . 15倍 D. 6倍
5.小明家離學校大約1千米,他從家步行到學校,大約要( )分鍾.
A. 80 B. 60 C. 5 D. 3
6.在前1000個自然數中有168個質數,那麼合數的個數有( ).
A.833個 B,832個 C,831個 D,830個
7.一個長方體鋸成二段要用5分鍾,鋸成5段要( )分鍾.
A,25 B,20 C,12.5
8.三個連續自然數的和是12 ,這個三個數的最大公約數是( ).
A,1 B, 2 C, 3
四.應用題.
1.一個正方體的水箱,每邊長4分米,裝滿了一箱水,如果把這一箱水倒入另一個長是0.8米,寬是25厘米的長方體水箱中,水深是多少
2.用一張長50厘米,寬40厘米的長方形紙板,從四個角剪去邊長1厘米的正方形後,做成紙盒,這個紙盒容積是多少表面積是多少
3.甲乙兩港相距180千米,一艘輪船去時每小時行駛45千米,返回時逆風,每小時行駛30千米,求這艘輪船往返甲,乙兩港的平均速度.
4.甲汽車28分鍾行20千米,乙汽車40分鍾行25千米,每分鍾的速度哪一個快快多少
5.某糧店運進大米1.5噸,麵粉比大米多噸,雜糧比麵粉少噸,問共運進糧食多少噸
6.師徒兩人合作生產一批零件,師傅每小時生產40個,徒弟每小時生產30個,完成任務時徒弟正好生產了450個,這批零件共多少個