當前位置:首頁 » 基礎知識 » 新高一數學集合知識點講解
擴展閱讀
資料庫語言以什麼為基礎 2024-11-15 00:01:42
蒼天有眼歌詞叫什麼 2024-11-14 23:51:48

新高一數學集合知識點講解

發布時間: 2022-08-26 09:51:52

A. 高一數學集合間的基本關系知識點詳解

高一數學集合間的基本關系知識點

集合知識點總結

知識點包括集合的概念、集合元素的特性、集合的表示方法、常見的特殊集合、集合的分類和集合間的基本關系等知識點,除了集合的表示方法中的描述法較難理解,其它的都多是好理解的知識,只需加強記憶。

一、集合有關概念

1、集合的含義

2、集合中元素的三個特性: 確定性、互異性、無序性。

整數集Z (包括負整數、零和正整數) (4)有理數集Q (5)實數集R

6、集合的分類: (1)有限集;(2)無限集;(3)空集 。

二、集合間的基本關系

1、子集

2、真子集

3、空集

集合考法

集合是學習函數的基礎知識,在段考和高考中是必考內容。在段考中多考查集合間的子集和真子集關系,在高考中也是不可少的考查內容,多以選擇題和填空題的形式出現,經常出現在選擇填空題的前幾小題,難度不大。主要與函數和方程、不等式聯合考查的集合的表示方法和集合間的基本關系。

誤區提醒

2、集合的關系問題,有同學容易忽視空集這個特殊的集合,導致錯解。空集是任何集合的子集,是任何非空集合的真子集。

3、集合的運算要注意靈活運用韋恩圖和數軸,這實際上是數形結合的思想的具體運用。

4、集合的運算注意端點的取等問題。最好是直接代入原題檢驗。

5、集合中的元素具有確定性、互異性和無序性三個特徵,尤其是確定性和互異性。在解題中,要注意把握與運用,例如在解答含有參數問題時,千萬別忘了檢驗,否則很可能會因為不滿足“互異性”而導致結論錯誤。

【典型例題】

集合與集合的關系有“包含”與“不包含”,“相等”三種:

1、 子集概念:

一般地,對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,就說集合B包含A,記作AB(或說A包含於B),

也可記為BA(B包含A),此時說A是B的子集;A不是B的子集,記作A

B,讀作A不包含於B

2、集合相等:

對於集合A和B,如果集合A中的每一個元素都是集合B的元素,反過來,集合B的每一個元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就說集合A和集合B相等,記作A=B

3、真子集:

對於集合A與B,如果AB並且A≠B,則集合A是集合B的真子集,記作

,讀作A真包含於B(B真包含A)

集合間基本關系:

性質1:

(1)空集是任何集合的子集,即A;

(2)空集是任何非空集合的真子集;

(3)傳遞性:AB,BCAC;AB,BCAC;

(4)AB,BAA=B。

性質2:

子集個數的運算:含n個元素的集合A的子集有2n個,非空子集有2n-1個,非空真子集有2n-2個。

集合間基本關系性質:

(1)空集是任何集合的子集,即A;

(2)空集是任何非空集合的真子集;

(3)傳遞性

(4)集合相等

(5)含n個元素的集合A的子集有2n個,非空子集有2n-1個,非空真子集有2n-2個。

高一數學統計練習題和答案解析

第Ⅰ卷(選擇題,共50分)

一、選擇題:本大題共10小題,共50分.

1.一個容量為100的樣本,其數據的分組與各組的頻數如下表

組別 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]

頻數 12 13 24 15 16 13 7

則樣本數據落在(10,40]上的頻率為()

A.0.13 B.0.39

C.0. 52 D.0.64

解析:由題意知頻數在(10,40]的有13+24+15=52.

故 頻率=52100=0.5 2.

答案:C

2.某大學教學系共有本科生5 000人,其中一、二、三、四年級的人數比為4∶3∶2∶1,要用分層抽樣的方法從所有本科生中抽取一個容量為200的樣本,則應抽取三年級的學生人數為()

A.80 B.40

C.60 D.20

解析:應抽取三年級的學生數為200×210=40.

答案:B

3.(2013•湖南卷)某工廠甲、乙、丙三個車間生產了同一種產品,數量分別為120件,80件,60件.為了解它們的產品質量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產品中抽取了3件,則n=()

A.9 B.10

C.12 D.13

解析:由分層抽樣的含義可得,60120+80+60=3n,所以n=13.

答案:D

4.甲、乙兩名籃球運動員在某幾場比賽中得分的莖葉圖如圖所示,則甲、乙兩人在這幾場比賽中得分的中位數之和是()

A.63 B.64

C.65 D.66

解析:甲、乙兩人在這幾場比賽中得分的中位數分別是36和27,則中位數之和是36+27=63.

答案:A

5.某題的得分情況如下:

得分(分 ) 0 1 2 3 4

頻率(%) 37.0 8.6 6.0 28.2 20.2

其中眾數是()

A.37.0% B.20.2%

C.0分 D.4分

解析:由於眾數出現的頻率最大,所以眾數是0分.

答案:C

6.(2013•江西卷)總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為()

A.08 B.07

C.02 D.01

解析:從左到右符合題意的5個數分別為:08,02,14,07,01,故第5個數為01.

答案:D

7.在某項體育比賽中,七位裁判為一選手打出的分數如下:

90899095939493

去掉一個最高分和一個最低分後,所剩數據的平均數和方差分別為()

A.92,2 B.92,2.8

C.93,2 D.93,2.8

解析:去掉最高分9 5和最低分89後,剩餘數據的平均數為x=90+90+93+94+935=92,

方差為s2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.

答案:B

8.(2013•遼寧卷)某班的全體學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為:[20,40),[40,60),[60,80),[80,100].若低於60分的人數是15,則該班的學生人數是()

A.45 B.50

C.55 D.60

解析:由圖知低於60分的頻率為0.005×20+0.01×20=0.3,故總學生數為150.3=50人,故選B.

B. 高中數學集合知識點大全

集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義,即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。下面我給大家分享一些高中數學集合知識點大全,希望能夠幫助大家,歡迎閱讀!

目錄

高中數學集合知識點

高中數學學習方法

高中數學考試答題技巧

高中數學集合知識點

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示 方法 :常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

>>>

高中 數學 學習方法

1、 課前預習 能提高聽課的針對性。

預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助於提高思維能力,預習後把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。

2、聽課過程中的科學。

首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、本等物丟三落四的現象;上課前也不應做過於激烈的 體育運動 或看小書、下棋、激烈爭論等。以免上課後還喘噓噓,或不能平靜下來。

其次就是聽課要全神貫注。

全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。

耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納 總結 ,另外,還要聽同學們的答問,看是否對自己有所啟發。

眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢等動作,生動而深刻的接受老師所要表達的思想。

心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。

口到:就是在老師的指導下,主動回答問題或參加討論。

手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有 創新思維 的見解。

若能做到上述「五到」,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。

3、特別注意講課的開頭和結尾。

講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。

4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。

>>>

高中數學考試答題技巧

掌握時間

由於,基礎中考能力,所以要注重解題的快法和巧法,能在30分鍾左右,完成全部的選擇填空題,這是奪取高分的關鍵。在平時當中一定要求自己選擇填空一分鍾一道題。用數學思想方法高速解答選擇填空題。

先易後難

所以,只做選擇,填空和前三道大題是不夠全面的。因為,後「三難」題中的容易部分比前面的基礎部分還要容易,所以我們應該志在必得。在復習的時候,根據自己的情況,如果基礎較好那首先爭取選擇,填空前三道大題得滿分。然後,再提高解答「三難」題的能力,爭取「三難」題得分20分到30分。這樣,你的總分就可以超過130分,向145分沖刺。

後三題盡量多得分

第二段是解答題的前三題,分值不到40分。這樣前兩個階段的總分在110分左右。第三段是最後「三難」題,分值不到40分。「三難」題並不全難,難點的分值只有12分到18分,平均每道題只有4分到6分。首先,應在「三難」題中奪得12分到20分,剩下最難的步驟分在努力爭取。後3題不是只做第一問的問題,而應該猜想評分標准,按步驟由前向後爭取高分。

>>>


高中數學集合知識點大全相關 文章 :

★ 高一數學集合知識點及例題分析

★ 高一數學集合知識點匯總(2)

★ 高一數學必修一集合公式知識點與學習方法

★ 高中數學全部知識點提綱整理

★ 高中數學必考知識點歸納整理

★ 高中數學知識點重點總結大全

★ 高中數學知識點總結歸納最新

★ 高一數學知識點匯總大全

★ 高一數學知識點全面總結

★ 高一數學必修一知識點整理大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

C. 高一的知識點總結

高一集合的知識點總結

高一集合是數學中的考點,但其實並不是十分的難,屬於理論題。下面高一集合的知識點總結是我為大家帶來的,希望對大家有所幫助。

高一集合的知識點總結

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的.表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:n,z,q,r,n*

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈a都有x∈b,則a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;記為a b(或 ,且 )

3)交集:a∩b={x| x∈a且x∈b}

4)並集:a∪b={x| x∈a或x∈b}

5)補集:cua={x| x a但x∈u}

注意:①? a,若a≠?,則? a ;

②若 , ,則 ;

③若 且 ,則a=b(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、並集運算的性質

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的個數:設集合a的元素個數是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。

二.例題講解:

【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},則m,n,p滿足關系

a) m=n p b) m n=p c) m n p d) n p m

分析一:從判斷元素的共性與區別入手。

解答一:對於集合m:{x|x= ,m∈z};對於集合n:{x|x= ,n∈z}

對於集合p:{x|x= ,p∈z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以m n=p,故選b。

分析二:簡單列舉集合中的元素。

解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

= ∈n, ∈n,∴m n,又 = m,∴m n,

= p,∴n p 又 ∈n,∴p n,故p=n,所以選b。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合 , ,則( b )

a.m=n b.m n c.n m d.

解:

當 時,2k+1是奇數,k+2是整數,選b

【例2】定義集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},則a*b的子集個數為

a)1 b)2 c)3 d)4

分析:確定集合a*b子集的個數,首先要確定元素的個數,然後再利用公式:集合a={a1,a2,…,an}有子集2n個來求解。

解答:∵a*b={x|x∈a且x b}, ∴a*b={1,7},有兩個元素,故a*b的子集共有22個。選d。

變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那麼集合m的個數為

a)5個 b)6個 c)7個 d)8個

變式2:已知{a,b} a {a,b,c,d,e},求集合a.

解:由已知,集合中必須含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析 本題集合a的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .

【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求實數p,q,r的值。

解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a

∵a∩b={1} ∴1∈a ∴方程x2+px+q=0的兩根為-2和1,

∴ ∴

變式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求實數b,c,m的值.

解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3} ∵a∪b=b ∴

又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b滿足:a∪b={x|x>-2},且a∩b={x|1

分析:先化簡集合a,然後由a∪b和a∩b分別確定數軸上哪些元素屬於b,哪些元素不屬於b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

綜合以上各式有b={x|-1≤x≤5}

變式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有滿足條件的a的集合。

解答:m={-1,3} , ∵m∩n=n, ∴n m

①當 時,ax-1=0無解,∴a=0 ②

綜①②得:所求集合為{-1,0, }

【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為q,若p∩q≠φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。

解答:(1)若 , 在 內有有解

令 當 時,

所以a>-4,所以a的取值范圍是

變式:若關於x的方程 有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

三.隨堂演練

選擇題

1. 下列八個關系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

⑥0 ⑦ {0} ⑧ { }其中正確的個數

(a)4 (b)5 (c)6 (d)7

2.集合{1,2,3}的真子集共有

(a)5個 (b)6個 (c)7個 (d)8個

3.集合a={x } b={ } c={ }又 則有

(a)(a+b) a (b) (a+b) b (c)(a+b) c (d) (a+b) a、b、c任一個

4.設a、b是全集u的兩個子集,且a b,則下列式子成立的是

(a)cua cub (b)cua cub=u

(c)a cub= (d)cua b=

5.已知集合a={ }, b={ }則a =

(a)r (b){ }

(c){ } (d){ }

6.下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為

{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是

(a)只有(1)和(4) (b)只有(2)和(3)

(c)只有(2) (d)以上語句都不對

7.設s、t是兩個非空集合,且s t,t s,令x=s 那麼s∪x=

(a)x (b)t (c)φ (d)s

8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為

(a)r (b) (c){ } (d){ }

填空題

9.在直角坐標系中,坐標軸上的點的集合可表示為

10.若a={1,4,x},b={1,x2}且a b=b,則x=

11.若a={x } b={x },全集u=r,則a =

12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是

13設集合a={ },b={x },且a b,則實數k的取值范圍是。

14.設全集u={x 為小於20的非負奇數},若a (cub)={3,7,15},(cua) b={13,17,19},又(cua) (cub)= ,則a b=

解答題

15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1}, 若a b={-3},求實數a。

16(12分)設a= , b= ,

其中x r,如果a b=b,求實數a的取值范圍。

四.習題答案

選擇題

1 2 3 4 5 6 7 8

c c b c b c d d

填空題

9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}

解答題

15.a=-1

16.提示:a={0,-4},又a b=b,所以b a

(ⅰ)b= 時, 4(a+1)2-4(a2-1)<0,得a<-1

(ⅱ)b={0}或b={-4}時, 0 得a=-1

(ⅲ)b={0,-4}, 解得a=1

綜上所述實數a=1 或a -1

;

D. 高一集合數學知識點有哪些

如下:

1、集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

2、集合中的元素具有確定性、互異性和無序性。

3、集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

4、集合,在數學上是一個基礎概念。基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

5、集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

性質

對任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A。

對任意集合 A,空集和 A 的並集為 A:∀A:A ∪ Ø = A。

對任意非空集合 A,空集是 A的真子集:∀A,若A≠Ø,則Ø 真包含於 A。

對任意集合 A,空集和 A 的交集為空集:∀A,A ∩ Ø = Ø。

對任意集合 A,空集和 A 的笛卡爾積為空集:∀A,A × Ø = Ø。

空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,則 A= Ø;∀A,若A= Ø,則A ⊆ Ø ⊆ A。

E. 高一數學集合的基本運算知識點

當一個小小的心念變成成為行為時,便能成了習慣;從而形成性格,而性格就決定你一生的成敗。成功與不成功之間有時距離很短——只要後者再向前幾步。我高一頻道為莘莘學子整理了《高 一年級數學 《集合》知識點 總結 》,希望對你有所幫助!


高一數學 集合的基本運算知識點

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示 方法 :常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={∈A且x∈B}

4)並集:A∪B={∈A或x∈B}

5)補集:CUA={A但x∈U}

注意:①?A,若A≠?,則?A;

②若,,則;

③若且,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

4.有關子集的幾個等價關系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、並集運算的性質

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

二.例題講解:

【例1】已知集合M={=m+,m∈Z},N={=,n∈Z},P={=,p∈Z},則M,N,P滿足關系

A)M=NPB)MN=PC)MNPD)NPM

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{=,m∈Z};對於集合N:{=,n∈Z}

對於集合P:{=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合,,則(B)

A.M=NB.MNC.NMD.

解:

當時,2k+1是奇數,k+2是整數,選B

【例2】定義集合AB={∈A且xB},若A={1,3,5,7},B={2,3,5},則AB的子集個數為

A)1B)2C)3D)4

分析:確定集合AB子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵AB={∈A且xB},∴AB={1,7},有兩個元素,故AB的子集共有22個。選D。

變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個B)6個C)7個D)8個

變式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.

【例3】已知集合A={2+px+q=0},B={2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

∴∴

變式:已知集合A={2+bx+c=0},B={2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={>-2},且A∩B={x1<>

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x-2<><-1或x>1}。由A∩B={x1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。<-1或x>

<><-1或x>

綜合以上各式有B={x-1≤x≤5}

變式1:若A={3+2x2-8x>0},B={2+ax+b≤0},已知A∪B={>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={2-2x-3=0},N={xax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3},∵M∩N=N,∴NM

①當時,ax-1=0無解,∴a=0②

綜①②得:所求集合為{-1,0,}

【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。

解答:(1)若,在內有有解

令當時,

所以a>-4,所以a的取值范圍是

變式:若關於x的方程有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

三.隨堂演練

選擇題

1.下列八個關系式①{0}=②=0③{}④{}⑤{0}

⑥0⑦{0}⑧{}其中正確的個數

(A)4(B)5(C)6(D)7

2.集合{1,2,3}的真子集共有

(A)5個(B)6個(C)7個(D)8個

3.集合A={x}B={}C={}又則有

(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一個

4.設A、B是全集U的兩個子集,且AB,則下列式子成立的是

(A)CUACUB(B)CUACUB=U

(C)ACUB=(D)CUAB=

5.已知集合A={},B={}則A=

(A)R(B){}

(C){}(D){}

6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為

{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是

(A)只有(1)和(4)(B)只有(2)和(3)

(C)只有(2)(D)以上語句都不對

7.設S、T是兩個非空集合,且ST,TS,令X=S那麼S∪X=

(A)X(B)T(C)Φ(D)S

8設一元二次方程ax2+bx+c=0(a<0)的根的判別式,則不等式ax2+bx+c0的解集為

(A)R(B)(C){}(D){}

填空題

9.在直角坐標系中,坐標軸上的點的集合可表示為

10.若A={1,4,x},B={1,x2}且AB=B,則x=

11.若A={x}B={x},全集U=R,則A=

12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是

13設集合A={},B={x},且AB,則實數k的取值范圍是。

14.設全集U={x為小於20的非負奇數},若A(CUB)={3,7,15},(CUA)B={13,17,19},又(CUA)(CUB)=,則AB=

解答題

15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-3},求實數a。

16(12分)設A=,B=,

其中xR,如果AB=B,求實數a的取值范圍。

四.習題答案

選擇題

12345678

CCBCBCDD

填空題

9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}

解答題

15.a=-1

16.提示:A={0,-4},又AB=B,所以BA

(Ⅰ)B=時,4(a+1)2-4(a2-1)<0,得a<-1

(Ⅱ)B={0}或B={-4}時,0得a=-1

(Ⅲ)B={0,-4},解得a=1

綜上所述實數a=1或a-1

高一數學集合的基本運算知識點

集合具有某種特定性質的事物的總體。這里的「事物」可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、 口號 等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。

集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

元素與集合的關系

元素與集合的關系有「屬於」與「不屬於」兩種。

集合與集合之間的關系

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為准。所有男人的集合是所有人的集合的真子集。』

集合的幾種運演算法則

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

集合元素的性質

1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。4.無序性:{a,b,c}{c,b,a}是同一個集合。5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。

集合有以下性質

若A包含於B,則A∩B=A,A∪B=B

集合的表示方法

集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。

常用的有列舉法和描述法。1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0

4.自然語言常用數集的符號:(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N(2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z-(3)全體整數的集合通常稱作整數集,記作Z(4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-)(5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-)(6)復數集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合「容斥原理」在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設A為集合,把A的全部子集構成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復數集C實數集R正實數集R+負實數集R-整數集Z正整數集Z+負整數集Z-有理數集Q正有理數集Q+負有理數集Q-不含0的有理數集Q

高一數學集合的基本運算知識點

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}交集:以屬於A且屬於B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那麼因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合

1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬於B}。註:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

至於 學習方法 的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,這里主要根據教材的特點提出幾點供大家學習時參考。

l、要重視數學概念的理解。高一數學與初中數學的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而y=f(x-l)與y=f(1-x)的圖象卻關於直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

2、『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。

3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。

4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。


高一數學集合的基本運算知識點相關 文章 :

★ 高一數學集合的基本運算的知識點分析

★ 高一數學集合知識點及例題講解

★ 高一數學集合間的基本關系的知識點(2)

★ 高一數學集合間的基本關系的知識點

★ 高一數學必修一集合的運算知識點

★ 高一數學集合間的基本關系知識點詳解

★ 高一數學集合知識點匯總

★ 高一數學集合知識點及例題分析

★ 高一數學集合知識點歸納和習題

★ 新課標高一數學集合知識點

F. 高一數學集合知識點詳解

概要:第一章 集合與函數概念 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說 ...
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

G. 高一數學集合間的基本關系的知識點(2)

高一數學集合關系運算期中考試分析

1.設集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∪B等於()

A.{x|x≥3}B.{x|x≥2}

C.{x|2≤x<3} D.{x|x≥4}

【解析】B={x|x≥3}.畫數軸(如下圖所示)可知選B.

【答案】B

2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()

A.{3,5} B.{3,6}

C.{3,7} D.{3,9}

【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故選D.

【答案】D

3.50名學生參加甲、乙兩項體育活動,每人至少參加了一項,參加甲項的學生有30名,參加乙項的學生有25名,則僅參加了一項活動的學生人數為________.

【解析】

設兩項都參加的有x人,則只參加甲項的有(30-x)人,只參加乙項的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.

∴只參加甲項的有25人,只參加乙項的有20人,

∴僅參加一項的有45人.

【答案】45

4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.

【解析】∵A∩B={9},

∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.

當a=5時,A={-4,9,25},B={0,-4,9}.

此時A∩B={-4,9}≠{9}.故a=5捨去.

當a=3時,B={-2,-2,9},不符合要求,捨去.

經檢驗可知a=-3符合題意.

一、選擇題(每小題5分,共20分)

1.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},則a的值為()

A.0 B.1

C.2 D.4

【解析】∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},

∴{a,a2}={4,16},∴a=4,故選D.

【答案】D

2.設S={x|2x+1>0},T={x|3x-5<0},則S∩T=()

A.Ø B.{x|x<-12}

C.{x|x>53} D.{x|-12

【解析】S={x|2x+1>0}={x|x>-12},T={x|3x-5<0}={x|x<53},則S∩T={x|-12

【答案】D

3.已知集合A={x|x>0},B={x|-1≤x≤2},則A∪B=()

A.{x|x≥-1} B.{x|x≤2}

C.{x|0

【解析】集合A、B用數軸表示如圖,

A∪B={x|x≥-1}.故選A.

【答案】A

4.滿足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的個數是()

A.1 B.2

C.3 D.4

【解析】集合M必須含有元素a1,a2,並且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故選B.

【答案】B

二、填空題(每小題5分,共10分)

5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,則實數a的取值范圍是________.

【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需

a≤1.

【答案】a≤1

6.滿足{1,3}∪A={1,3,5}的所有集合A的個數是________.

【解析】由於{1,3}∪A={1,3,5},則A⊆{1,3,5},且A中至少有一個元素為5,從而A中其餘元素可以是集合{1,3}的子集的元素,而{1,3}有4個子集,因此滿足條件的A的個數是4.它們分別是{5},{1,5},{3,5},{1,3,5}.

【答案】4

三、解答題(每小題10分,共20分)

7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.

【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.

若x2-1=3則x=±2;

若x2-1=5,則x=±6;

綜上,x=±2或±6.

當x=±2時,B={1,2,3},此時A∩B={1,3};

當x=±6時,B={1,2,5},此時A∩B={1,5}.

8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范圍.

【解析】由A∩B=Ø,

(1)若A=Ø,

有2a>a+3,∴a>3.

(2)若A≠Ø,

如圖:

∴ ,解得- ≤a≤2.

綜上所述,a的取值范圍是{a|- ≤a≤2或a>3}.

9.(10分)某班有36名同學參加數學、物理、化學課外探究小組,每名同學至多參加兩個小組.已知參加數學、物理、化學小組的人數分別為26,15,13,同時參加數學和物理小組的有6人,同時參加物理和化學小組的有4人,則同時參加數學和化學小組的有多少人?

【解析】設單獨參加數學的同學為x人,參加數學化學的為y人,單獨參加化學的為z人.

依題意x+y+6=26,y+4+z=13,x+y+z=21,解得x=12,y=8,z=1.

∴同時參加數學化學的同學有8人,

H. 高一數學集合知識點歸納有哪些

如下:

1、給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。

2、一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

3、作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

4、對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

5、含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

I. 高一數學集合的基本運算的知識點分析

高一數學集合的基本運算的知識點

(1)A={1,3,5},B={1,2,3,4},C={1,2,3,4,5}

(2)A={x|0

思考:上述兩組集合中,集合A、B與集合C的關系如何?

由所有屬於集合A或屬於集合B的元素組成的集合,稱為集合A與B的並集。

思考:我們用符號“A∪B”表示集合A與B的並集,並讀作“A並B”,那麼如何用描述法表示集合A∪B?

思考:如何用venn圖表示A∪B?

思考:集合A、B與集合A∪B的關系如何?A∪B與B∪A的關系如何?

思考:集合A∪A,A∪分別等於什麼?

思考:若AB,則A∪B等於什麼?反之成立嗎?

思考:如A∪B=,則說明什麼?

並集例題:

例1:設A={4,5,6,8},B={3,5,7,8},求A∪B。

例2:設集合A={x|-1

知識探究(二)

考察下列兩組集合:

(1)A={1,3,5},B={1,2,3,4},C={1,3}

(2)A={x|0

思考:上述兩組集合中,集合A、B與集合C的關系如何?

由屬於集合A且屬於集合B的所有元素組成的集合,稱為集合A與B的交集。

我們用符號“A∩B”表示集合A與B的交集,並讀作“A交B”,那麼如何用描述法表示集合A∩B?

思考:如何用venn圖表示A∩B?

思考:集合A、B與集合A∩B的關系如何?A∩B與B∩A的關系如何?

思考:集合A∩A,A∩分別等於什麼?

思考:若AB,則A∩B等於什麼?反之成立嗎?

思考:如A∩B=,則說明什麼?

交集例題:

例3:A={x|x是新華中學高一年級參加百米賽跑的同學},B={x|x是新華中學高一年級參加跳高比賽的同學}。求A∪B。

例4:設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系。

知識探究(三)

思考:方程(x-2)(x2-3)=0在有理數范圍內的解是什麼?在實數范圍內的解是什麼?

思考:不等式0

由此看來:在不同范圍內研究同一個問題,可能有不同的結果,我們通常把研究問題前給定的范圍所對應的集合稱為全集,如Q,R,Z等,那麼全集的含義如何呢?

如果一個集合含有所研究問題中涉及的所有元素,則稱這個集合為全集,通常記作U。

知識探究(四)

考察下列各組集合:

(1)U={1,2,3,4,…,10},A={1,3,5,7,9},B={2,4,6,8,10}

(2)U={x|x是市一高一年級2班的同學},A={x|x是市一高一年級2班的男同學},U={x|x是市一高一年級2班的女同學}

(3)U={x|0

思考:在上述各組集合中,把集合U看成全集,我們稱集合B為集合A相對於全集U的補集。一般地,集合A相對於全集U的補集是由哪些元素組成的?

由全集U中不屬於集合A的所有元素組成的。

對於一個集合A,由全集U中不屬於集合A的所有元素組成的集合,稱為集合A相對於全集U的補集,記作CUA。

思考:如何用描述法表示集合A相對於全集U的補集?如何用veuu圖表示CUA?

思考:集合CU,CUU,A∩CUA,A∪CUA,分別等於什麼?

思考:若CUA=B,則CUB等於什麼?若AB,則CUA與CUB的關系如何?

補集例題:

例5:設全集U={x∈N*|x<9},A={1,2,3,4},B={3,4,5,6,7},求CU(A∩B),(CUA)∪B。

例6:已知全集U=R,集合A={x||x-1|>2},B={x|2

例7:設全集U={x|x是三角形},A={x|x是銳角三角形},B={x|x是鈍角三角形}。

求A∩B,CU(A∪B)。

高一數學必修一集合試題

一、基礎過關

1.設P={x|x<4},Q={x|x2<4},則()

A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

2.符合條件{a}?P⊆{a,b,c}的集合P的個數是()

A.2B.3

C.4D.5

3.已知集合A,B均為集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁UA)∩B={5},則集合B等於()

A.{1,3}B.{3,5}

C.{1,5}D.{1,3,5}

4.設M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},則下列關系正確的是()

A.M=P

B.M?P

C.P?M

D.M與P沒有公共元素

5.全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)等於()

A.{1,3,5}B.{2,4,6}

C.{1,5}D.{1,6}

6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那麼a的取值范圍是________.

7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)求A∩B;

(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數a的取值范圍.

8.設A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A∪B={3,5},A∩B={3},求實數a,b,c的值.

二、能力提升

9.已知集合A={x|x<3或x≥7},B={x|x

A.a>3B.a≥3C.a≥7D.a>7

10.集合A={1,2,3,5},當x∈A時,若x-1A,x+1A,則稱x為A的一個“孤立元素”,則A中孤立元素的個數為____.

11.設U=R,M={x|x≥1},N={x|0≤x<5},則(∁UM)∪(∁UN)=________.

12.某班50名同學參加一次智力競猜活動,對其中A,B,C三道知識題作答情況如下:答錯A者17人,答錯B者15人,答錯C者11人,答錯A,B者5人,答錯A,C者3人,答錯B,C者4人,A,B,C都答錯的有1人,問A,B,C都答對的有多少人?

三、探究與拓展

13.已知集合A={x|1

(1)試定義一種新的集合運算Δ,使AΔB={x|1

(2)按(1)的運算,求BΔA.

高一數學必修一集合試題(2)

一、填空題

1.下列語句能確定是一個集合的是________.(填序號)

①著名的科學家;

②留長發的女生;

③2010年廣州亞運會比賽項目;

④視力差的男生.

2.集合A只含有元素a,則下列各式正確的是________.(填序號)

①0∈A;②a∉A;③a∈A;④a=A.

3.已知M中有三個元素可以作為某一個三角形的邊長,則此三角形一定不是________.(填序號)

①直角三角形;②銳角三角形;③鈍角三角形;④等腰三角形.

4.由a2,2-a,4組成一個集合A,A中含有3個元素,則實數a的取值可以是________.(填序號)

①1;②-2;③6;④2.

5.已知集合A是由0,m,m2-3m+2三個元素組成的集合,且2∈A,則實數m的值為________.

6.由實數x、-x、|x|、x2及-3x3所組成的集合,最多含有________個元素.

7.由下列對象組成的集體屬於集合的是________.(填序號)

①不超過π的正整數;

②本班中成績好的同學;

③高一數學課本中所有的簡單題;

④平方後等於自身的數.

8.集合A中含有三個元素0,1,x,且x2∈A,則實數x的值為________.

9.用符號“∈”或“∉”填空

-2______R,-3______Q,-1_______N,π______Z.

二、解答題

10.判斷下列說法是否正確?並說明理由.

(1)參加2010年廣州亞運會的所有國家構成一個集合;

(2)未來世界的高科技產品構成一個集合;

(3)1,0.5,32,12組成的集合含有四個元素;

(4)高一(三)班個子高的同學構成一個集合.

11.已知集合A是由a-2,2a2+5a,12三個元素組成的,且-3∈A,求a.

能力提升

12.設P、Q為兩個非空實數集合,P中含有0,2,5三個元素,Q中含有1,2,6三個元素,定義集合P+Q中的元素是a+b,其中a∈P,b∈Q,則P+Q中元素的個數是多少?

13.設A為實數集,且滿足條件:若a∈A,則11-a∈A(a≠1).

求證:(1)若2∈A,則A中必還有另外兩個元素;