1. 新課標高中數學必修一知識點總結
新課標數學必修1知識點總結 第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 aA
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合例:{x|x2=-5}<br>二、集合間的基本關系<br>1.「包含」關系—子集<br>注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。<br>反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A<br>2.「相等」關系(5≥5,且5≤5,則5=5)<br>實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作"A並B"),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x xS且 xA}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;○3 函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
構成函數的三要素:定義域、對應關系和值域
再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2) 畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
發現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
常用的函數表示法及各自的優點:
○1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;○2 解析法:必須註明函數的定義域;○3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;○4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數 (參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間 (睇清楚課本單調區間的概念)
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:○1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;
○2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 變形(通常是因式分解和配方);○4 定號(即判斷差f(x1)-f(x2)的正負);○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:
函數 單調性
u=g(x) 增 增 減 減
y=f(u) 增 減 增 減
y=f[g(x)] 增 減 減 增
注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
注意:○1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。
○2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:○1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;○2 確定f(-x)與f(x)的關系;○3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=眆(x)比較困難,可考慮根據是否有f(-x)眆(x)=0或f(x)/f(-x)=?來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值○2 利用圖象求函數的最大(小)值○3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 第二章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成?( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
,
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(1) • ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential function),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0<a<1圖象特徵 函數性質向x、y軸正負方向無限延伸 函數的定義域為R
圖象關於原點和y軸不對稱 非奇非偶函數
函數圖象都在x軸上方 函數的值域為R+
函數圖象都過定點(0,1)自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
在第一象限內的圖象縱坐標都大於1 在第一象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都小於1 在第二象限內的圖象縱坐標都大於1
圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值後增長速度極快; 函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;二、對數函數
(一)對數
1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
對數式與指數式的互化(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 • + ;
○2 - ;
○3 .
注意:換底公式
( ,且 ; ,且 ; ).
利用換底公式推導下面的結論(1) ;(2) .
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0<a<1圖象特徵 函數性質函數圖象都在y軸右側 函數的定義域為(0,+∞)
圖象關於原點和y軸不對稱 非奇非偶函數
向y軸正負方向無限延伸 函數的值域為R
函數圖象都過定點(1,0)自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
第一象限的圖象縱坐標都大於0 第一象限的圖象縱坐標都大於0
第二象限的圖象縱坐標都小於0 第二象限的圖象縱坐標都小於0
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:
方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.呵呵,要採納哦~
2. 高一數學必修一知識點總結
數學知識點是高考的基礎,掌握 高一數學 知識點將對高考復習起到重要作用,高一數學必修一知識點 總結 有哪些你知道嗎?一起來看看高一數學必修一知識點總結,歡迎查閱!
高1數學知識點總結
一、集合、簡易邏輯(14課時,8個)
1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數(30課時,12個)
1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。
三、數列(12課時,5個)
1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。
四、三角函數(46課時,17個)
1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。
五、平面向量(12課時,8個)
1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。
六、不等式(22課時,5個)
1.不等式;2.不等式的'基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程(22課時,12個)
1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。
八、圓錐曲線(18課時,7個)
1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。
九、直線、平面、簡單何體(36課時,28個)
1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理(18課時,8個)
1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。
十一、概率(12課時,5個)
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。
選修Ⅱ(24個)
十二、概率與統計(14課時,6個)
1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。
十三、極限(12課時,6個)
1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。
十四、導數(18課時,8個)
1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。
十五、復數(4課時,4個)
1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二二項方程的解法。
數學必修一知識點整理集合與函數概念
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1.Com
非負整數集(即自然數集)記作:N
正整數集:N_或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合
二、集合間的基本關系
1.「包含」關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.「相等」關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」
即:①任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?B,B?C,那麼A?C
④如果A?B同時B?A那麼A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).
基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
函數的應用
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
1(代數法)求方程的實數根;
2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
必修一函數重點知識整理
1. 函數的奇偶性
(1)若f(x)是偶函數,那麼f(x)=f(-x) ;
(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2. 復合函數的有關問題
(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由「同增異減」判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;
(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;
5.方程k=f(x)有解 k∈D(D為f(x)的值域);
6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+);
(2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符號由口訣「同正異負」記憶;
(4) a log a N= N ( a>0,a≠1,N>0 );
8. 判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;
9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;
12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題
13. 恆成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。
高一數學必修一知識點總結相關 文章 :
★ 高一數學必修一知識點匯總
★ 高中數學必修1知識點總結
★ 高一數學必修一知識點總結
★ 高一數學知識點匯總大全
★ 高一數學必修1對數函數知識點總結
★ 高一數學必修1函數的知識點歸納
★ 高一數學必修一知識點總結歸納
★ 高一數學必修1知識點歸納
★ 高中數學必修一復習提綱
★ 高一數學必修1知識整理
3. 高中數學知識點總結如何歸納
高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。
中元素各表示什麼?
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質:
(3)德摩根定律:
4. 你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?
10. 如何求復合函數的定義域?
義域是_____________。
11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?
12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)
13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?
∴……)
15. 如何利用導數判斷函數的單調性?
值是( )
A. 0 B. 1 C. 2 D. 3
∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)
注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。
17. 你熟悉周期函數的定義嗎?
函數,T是一個周期。)
如:
18. 你掌握常用的圖象變換了嗎?
注意如下「翻折」變換:
19. 你熟練掌握常用函數的圖象和性質了嗎?
的雙曲線。
應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程
②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質! (注意底數的限定!)
利用它的單調性求最值與利用均值不等式求最值的區別是什麼?
20. 你在基本運算上常出現錯誤嗎?
21. 如何解抽象函數問題?
(賦值法、結構變換法)
22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:
23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
24. 熟記三角函數的定義,單位圓中三角函數線的定義
25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?
(x,y)作圖象。
27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。
28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?
29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30. 熟練掌握同角三角函數關系和誘導公式了嗎?
「奇」、「偶」指k取奇、偶數。
A. 正值或負值 B. 負值 C. 非負值 D. 正值
31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:
應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。
32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?
(應用:已知兩邊一夾角求第三邊;已知三邊求角。)
33. 用反三角函數表示角時要注意角的范圍。
34. 不等式的性質有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下結論:
36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。
(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始
39. 解含有參數的不等式要注意對字母參數的討論
40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)
證明:
(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)
43. 等差數列的定義與性質
0的二次函數)
項,即:
44. 等比數列的定義與性質
46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習]
(2)疊乘法
解:
(3)等差型遞推公式
[練習]
(4)等比型遞推公式
[練習]
(5)倒數法
47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。
解:
[練習]
(2)錯位相減法:
(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。
[練習]
48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:
△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足
p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一
(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不
50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績
則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:
(2)中間兩個分數相等
相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理
性質:
(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
表示)
52. 你對隨機事件之間的關系熟悉嗎?
的和(並)。
(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。
53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即
(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生
如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。
56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57. 平面向量的數量積
數量積的幾何意義:
(2)數量積的運演算法則
[練習]
答案:
答案:2
答案:
58. 線段的定比分點
※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:
線面平行的判定:
線面平行的性質:
三垂線定理(及逆定理):
線面垂直:
面面垂直:
60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°
(2)直線與平面所成的角θ,0°≤θ≤90°
(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。
(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。
(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。
62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
它們各包含哪些元素?
63. 球有哪些性質?
(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。
(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。
積為( )
答案:A
64. 熟記下列公式了嗎?
(2)直線方程:
65. 如何判斷兩直線平行、垂直?
66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?
68. 分清圓錐曲線的定義
70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)
71. 會用定義求圓錐曲線的焦半徑嗎?
如:
通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。
答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。
75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
4. 高中數學所有知識點歸納
高中數學基礎知識梳理(數學小飛俠)
鏈接:
若資源有問題,歡迎追問~
5. 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
6. 求高中數學知識點總結(最全版)
高中數學合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取碼:1234
簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。
7. 高三數學知識點歸納
高三數學知識點匯總歸納在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點匯總歸納,僅供參考,希望能夠幫助到大家。
高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
1不等式的兩邊都加上或減去同一個整式,不等號方向不變。
2不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
3不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
1一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
2一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
1解一元一次不等式(組)
2根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
3用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C―底面周長
S底―底面積,S側―側面積,S表―表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b
另外,若b>0,則有>1?;=1?;
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:1a>b,ab>0?<;2a
3a>b>0,0;40
(2)若a>b>0,m>0,則
1真分數的性質:<;>
(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
1能使不等式成立的未知數的值,叫做不等式的解。
2一個含有未知數的不等式的所有解,組成這個不等式的解集。
3求不等式解集的過程叫做解不等式。
不等式的判定:
1常見的不等號有「>」「<」「≤」「≥」及「≠」。分別讀作「大於,小於,小於等於,大於等於,不等於」,其中「≤」又叫作不大於,「≥」叫作不小於;
2在不等式「a>b」或「a
3不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
1不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c
bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:「」和「」即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
2關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有1確定性;2互異性;3無序性
2.集合表示方法1列舉法;2描述法;3韋恩圖;4數軸法
(3)集合的運算
1A∩(B∪C)=(A∩B)∪(A∩C)
2Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、來表示。元素常用小寫字母a、b、c、來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
8. 高一數學必考重要知識點總結
人生要敢於理解挑戰,經受得起挑戰的人才能夠領悟人生非凡的真諦,才能夠實現自我無限的超越,才能夠創造魅力永恆的價值。下面是我給大家帶來的 高一數學 必考重要知識點 總結 ,以供大家參考!
高一數學必考重要知識點總結
反比例函數
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的`函數圖像。
當K>0時,反比例函數圖像經過一,三象限,是減函數
當K<0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
精選高一數學知識點總結
歸納1
1、「包含」關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2、「相等」關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那麼AíC
④如果AíB同時BíA那麼A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
歸納2
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(2和—2)時的函數圖像。
當K>0時,反比例函數圖像經過一,三象限,是減函數
當K<0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
歸納3
方程的根與函數的零點
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。
3、函數零點的求法:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。
4、二次函數的零點:
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。
(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。
歸納3
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。
當K>0時,反比例函數圖像經過一,三象限,是減函數
當K<0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
歸納4
冪函數的性質:
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。
在x大於0時,函數的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。
(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。
(6)顯然冪函數無界。
解題 方法 :換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。
高一數學知識點整合
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線的斜率
①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(4)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)過定點的直線系
(ⅰ)斜率為k的直線系:直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為(為參數),其中直線不在直線系中。
(5)兩直線平行與垂直;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交:交點坐標即方程組的一組解。方程組無解;方程組有無數解與重合
(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點到直線的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。
高一數學必考知識點總結相關 文章 :
★ 高一數學知識點總結
★ 高一數學常考知識點總結
★ 高一數學重要知識點梳理
★ 高一數學重要知識點整理
★ 高一數學知識點總結【必修一】
★ 高一數學知識點小歸納
★ 高一數學知識點梳理歸納
★ 高一數學重點知識點
★ 高中數學必修一三角函數知識點總結
★ 高中數學演算法初步知識點整理
9. 高一數學必背知識點總結
高一新生要作好充分思想准備,以自信、寬容的心態,盡快融入集體,適應新同學、適應新校園環境、適應與初中迥異的紀律制度。下面是我給大家帶來的 高一數學 必背知識點 總結 ,以供大家參考!
高一數學必背知識點總結
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的 方法 。一對多不是映射,多對一是映射
2、函數
構成函數概念的三要素
①定義域②對應法則③值域
兩個函數是同一個函數的條件:三要素有兩個相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小於零,零取零次方沒有意義;
(3)對數函數的真數必須大於零;
(4)指數函數和對數函數的底數必須大於零且不等於1;
三、函數的值域
1求函數值域的方法
①直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數;
②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調性法:利用函數的單調性求值域;
⑥圖象法:二次函數必畫草圖求其值域;
⑦利用對號函數
⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數
四.函數的奇偶性
1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函數。
如果對於任意∈A,都有,則稱y=f(x)為奇
函數。
2.性質:
①y=f(x)是偶函數y=f(x)的圖象關於軸對稱,y=f(x)是奇函數y=f(x)的圖象關於原點對稱,
②若函數f(x)的定義域關於原點對稱,則f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關於原點對稱]
3.奇偶性的判斷
①看定義域是否關於原點對稱②看f(x)與f(-x)的關系
五、函數的單調性
1、函數單調性的定義:
2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。
高一數學知識點小結人教版
1.等比數列的有關概念
(1)定義:
如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數(不為零),那麼這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_q為非零常數).
(2)等比中項:
如果a、G、b成等比數列,那麼G叫做a與b的等比中項.即:G是a與b的等比中項?a,G,b成等比數列?G2=ab.
2.等比數列的有關公式
(1)通項公式:an=a1qn-1.
3.等比數列{an}的`常用性質
(1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.
特別地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.
4.等比數列的特徵
(1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.
(2)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.
5.等比數列的前n項和Sn
(1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.
(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
高一必修一數學知識點總結
指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的.意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
高一數學必背知識點總結相關 文章 :
★ 高一數學必背公式及知識匯總
★ 高一數學必背知識點
★ 高一數學必修一基本初等函數知識點總結
★ 高一數學必記知識點概括
★ 高中數學必考知識點歸納
★ 高一數學必修一函數必背知識點整理
★ 高一數學必修的必會知識難點歸納
★ 高一數學的單元及必修知識點歸納
★ 高一數學知識點總結
★ 高中數學知識點全總結