當前位置:首頁 » 基礎知識 » 數學知識導覽圖
擴展閱讀
零基礎學語法什麼書最好 2024-11-13 03:55:23
六一畫雞怎麼祝福同學 2024-11-13 03:49:53

數學知識導覽圖

發布時間: 2022-08-24 08:25:28

『壹』 三年級下冊數學導游圖怎麼畫

先畫起點,再畫終點,終點填充途徑的地方。
導游圖是對某一個景點的介紹,也可以是對某一個省的景點的整體介紹。
導游圖是人類創造出來的一種神奇的圖畫。
它可以讓每個地方都出現在圖上,方便了大家出行。

『貳』 中考數學重點知識點梳理

學習數學的時候總結知識點是非常重要的一個環節,下面總結了中考數學重點知識點,供大家參考。

有理數

1.有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2.有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

3.有理數混合運算的四種運算技巧

轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數轉化為分數進行約分計算。

湊整法:在加減混合運算中,通常將和為零的兩個數,分母相同的兩個數,和為整數的兩個數,乘積為整數的兩個數分別結合為一組求解。

分拆法:先將帶分數分拆成一個整數與一個真分數的和的形式,然後進行計算。

巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

1.圓的對稱性

(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是旋轉對稱圖形。

2.垂徑定理

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3.圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5.夾在平行線間的兩條弧相等。

(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角三角形的外心就是斜邊的中點。)

6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。

數學定理

1.過兩點有且只有一條直線。

2.兩點之間線段最短。

3.同角或等角的補角相等。

4.同角或等角的餘角相等。

5.過一點有且只有一條直線和已知直線垂直。

6.直線外一點與直線上各點連接的所有線段中,垂線段最短。

7.平行公理經過直線外一點,有且只有一條直線與這條直線平行。

8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

9.同位角相等,兩直線平行。

10.內錯角相等,兩直線平行。

11.同旁內角互補,兩直線平行。

12.兩直線平行,同位角相等。

13.兩直線平行,內錯角相等。

14.兩直線平行,同旁內角互補。

15.定理三角形兩邊的和大於第三邊。

16.推論三角形兩邊的差小於第三邊。

17.三角形內角和定理三角形三個內角的和等於180°。

18.推論1直角三角形的兩個銳角互余。

19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和。

20.推論3三角形的一個外角大於任何一個和它不相鄰的內角。

一次函數

在正比例函數時,x與y的商一定。在反比例函數時,x與y的積一定。在y=kx+b(k,b為常數,k≠0)中,當x增大m倍時,函數值y則增大m倍,反之,當x減少m倍時,函數值y則減少m倍。

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(註:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

1.二次函數性質

特別地,二次函數(以下稱函數)y=ax²+bx+c(a≠0)。

當y=0時,二次函數為關於x的一元二次方程(以下稱方程),即ax²+bx+c=0(a≠0)

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

2.二次函數的值域

頂點坐標(-b/2a,(4αc-b²)/4α)

二次函數的基本形式為y=ax²+bx+c(a≠0)

a>0時,拋物線開口向上,圖象在頂點上方,所以值域y≥(4ac-b²)/4a,即[(4ac-b²)/4a,+∞)。

a<0時,拋物線開口向下,函數的值域是(-∞,(4ac-b²)/4a]

當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=ax²+c(a≠0)。

列方程(組)解應用題

列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

『叄』 高中數學知識結構框架圖

原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例

『肆』 數學知識結構圖怎麼畫說詳細點。

word、powerpoint均可。後者有些模版可用,但缺點是每片文字容量太小。而word作圖很困難。個人認為,都不是最好的選擇。

『伍』 關於數學的知識結構圖怎麼畫說詳細點。

其實很簡單
就是畫樹狀圖。
你把這學期的章節分別寫出來,然後這章里的重點列出來。
主要就是寫成樹狀圖的形式,也就是結構圖了。


你現在是幾年級啊,小學吧

這種需要自己理解與感悟和書上的知識進行歸納

我給你個參考圖

按這個來吧

不懂再問,望採納!

『陸』 初中數學知識導圖

網路圖就沒有了,知識點可以不?好多的知識點…還是要慢慢的一點一點的啃啊,當初我就是這樣啃過來的~~
初中數學概念及定義總結:三角形三條邊的關系 定理:三角形兩邊的和大於第三邊 推論:三角形兩邊的差小於第三邊 三角形內角和 三角形內角和定理 三角形三個內角的和等於180° 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等於和它不相鄰的兩個內角和 推論3 三角形的一個外角大雨任何一個和它不相鄰的內角 角的平分線 性質定理 在角的平分線上的點到這個角的兩邊的距離相等 判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上 等腰三角形的性質 等腰三角形的性質定理 等腰三角形的兩底角相等 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 推論2 等邊三角形的各角都相等,並且每一個角等於60° 等腰三角形的判定 判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等 推論1 三個角都相等的三角形是等邊三角形 推論2 有一個角等於60°的等腰三角形是等邊三角形 推論3 在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半 線段的垂直平分線 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 軸對稱和軸對稱圖形 定理1 關於某條之間對稱的兩個圖形是全等形 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 定理3 兩個圖形關於某直線對稱,若它們的對應線段或延長線相交,那麼交點在對稱軸上 逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關於這條直線對稱 勾股定理 勾股定理 直角三角形兩直角邊a、b的平方和,等於斜邊c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那麼這個三角形是直角三角形 四邊形 定理 任意四邊形的內角和等於360° 多邊形內角和 定理 多邊形內角和定理n邊形的內角的和等於(n - 2)·180° 推論 任意多邊形的外角和等於360° 平行四邊形及其性質 性質定理1 平行四邊形的對角相等 性質定理2 平行四邊形的對邊相等 推論 夾在兩條平行線間的平行線段相等 性質定理3 平行四邊形的對角線互相平分 平行四邊形的判定 判定定理1 兩組對邊分別平行的四邊形是平行四邊形 判定定理2 兩組對角分別相等的四邊形是平行四邊形 判定定理3 兩組對邊分別相等的四邊形是平行四邊形 判定定理4 對角線互相平分的四邊形是平行四邊形 判定定理5 一組對邊平行且相等的四邊形是平行四邊形 矩形 性質定理1 矩形的四個角都是直角 性質定理2 矩形的對角線相等 推論 直角三角形斜邊上的中線等於斜邊的一半 判定定理1 有三個角是直角的四邊形是矩形 判定定理2 對角線相等的平行四邊形是矩形 菱形 性質定理1 菱形的四條邊都相等 性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 判定定理1 四邊都相等的四邊形是菱形 判定定理2 對角線互相垂直的平行四邊形是菱形 正方形 性質定理1 正方形的四個角都是直角,四條邊都相等 性質定理2 正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 中心對稱和中心對稱圖形 定理1 關於中心對稱的兩個圖形是全等形 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱 梯形 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 三角形、梯形中位線 三角形中位線定理 三角形的中位線平行與第三邊,並且等於它的一半 梯形中位線定理 梯形的中位線平行與兩底,並且等於兩底和的一半 比例線段 1、 比例的基本性質 如果a∶b=c∶d,那麼ad=bc 2、 合比性質 3、 等比性質 平行線分線段成比例定理 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例 推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行與三角形的第三邊 垂直於弦的直徑 垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧 推論1 (1) 平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 (2) 弦的垂直平分線過圓心,並且平分弦所對的兩條弧 (3) 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 推論2 圓的兩條平分弦所夾的弧相等 圓心角、弧、弦、弦心距之間的關系 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等 圓周角 定理 一條弧所對的圓周角等於它所對的圓心角的一半 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直角 推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 圓的內接四邊形 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角 切線的判定和性質 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 切線的性質定理 圓的切線垂直於經過切點半徑 推論1 經過圓心且垂直於切線的直徑必經過切點 推論2 經過切點且垂直於切線的直線必經過圓心 切線長定理 定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 弦切角 弦切角定理 弦切角等於它所夾的弧對的圓周角 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 和圓有關的比例線段 相交弦定理:圓內的兩條相交弦,被焦點分成的兩條線段長的積相等 推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項 ……

太多了,不過網路很強大,之前有人問過類似的問題,這個可以看看http://..com/question/147977826.html?fr=qrl&cid=197&index=2&fr2=query

『柒』 《建築中的數學之旅》epub下載在線閱讀,求百度網盤雲資源

《建築中的數學之旅》([美] Alexander J. Hahn)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1AydYm0Qeqs_qj8pVjve0_Q


提取碼:czvy

書名:建築中的數學之旅

作者:[美] Alexander J. Hahn

譯者:李莉

豆瓣評分:8.2

出版社:人民郵電出版社

出版年份:2014-1

頁數:372

內容簡介:

本書圍繞兩條敘事主線展開,一條主線介紹了從金字塔到20世紀的世界標志性建築,討論這些偉大建築的建築形式和結構,用赫赫有名的例子說明建築的重要特徵,另一條主線則介紹了歐幾里得幾何、三角學、向量、二維和三維解析幾何,以及微積分等數學知識。在作者旁徵博引、娓娓道來的筆觸下,這兩條主線交織在一起,圖文並茂地展示了彼此的互相影響,給人無限啟發。本書的彩圖集合了全書介紹的歷史性建築,是本書的快速導覽。

作者簡介:

Alexander J. Hahn

美國聖母大學數學系教授,多年來主要關注正交群、矩陣群、克利福德代數(幾何代數)、Azumaya代數結構、二次型、埃爾米特型等代數方面的研究,另著有Basic Calculus: From Archimedes to Newton to Its Role in Science等書。

『捌』 初2數學上冊知識點

初二數學上冊知識點總結
1.過兩點有且只有一條直線 2.兩點之間線段最短 3.同角或等角的補角相等
4.同角或等角的餘角相等 5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行 11.同旁內角互補,兩直線平行 12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等 14.兩直線平行,同旁內角互補
☆定理 三角形兩邊的和大於第三邊 ☆推論 三角形兩邊的差小於第三邊
三角形內角和定理 三角形三個內角的和等於180°
推論:直角三角形的兩個銳角互余
推論:三角形的一個外角等於和它不相鄰的兩個內角的和
推論:三角形的一個外角大於任何一個和它不相鄰的內角
全等三角形的對應邊、對應角相等
邊角邊(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角( ASA);有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊(SSS) 有三邊對應相等的兩個三角形全等
斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
定理:在角的平分線上的點到這個角的兩邊的距離相等
定理:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形的性質定理:等腰三角形的兩個底角相等 (即等邊對等角)
推論:等腰三角形頂角的平分線平分底邊並且垂直於底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論:等邊三角形的各角都相等,並且每一個角都等於60°
等腰三角形的判定:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
推論:三個角都相等的三角形是等邊三角形
推論:有一個角等於60°的等腰三角形是等邊三角形
在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
直角三角形斜邊上的中線等於斜邊上的一半
定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理:關於某條直線對稱的兩個圖形是全等形
定理:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
定理 四邊形的內角和等於360°
四邊形的外角和等於360°
多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
推論:任意多邊的外角和等於360°
平行四邊形性質定理:平行四邊形的對角相等
平行四邊形性質定理:平行四邊形的對邊相等
推論 夾在兩條平行線間的平行線段相等
平行四邊形性質定理3 平行四邊形的對角線互相平分
平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
矩形性質定理1 矩形的四個角都是直角
學好初二數學的方法:
一、該記的記,該背的背,不要以為理解了就行
數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想:數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」,加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。

『玖』 數學知識點總結

小學數學知識匯總
圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)×2
長方形面積 =長×寬
正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
三角形面積 = 底×高÷2
平行四邊形面積 = 底 × 高

梯形面積 = (上底 +下底)×高÷2
圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
圓的面積等於3.14×半徑的平方。
環形的面積等於3.14×(大半徑的平方-
小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑
即:∏ r + 2 r
長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
長方體的體積 = 長 × 寬 × 高

底面積×高

正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
圓柱體的表面積=2個底面積 + 側面積

側面積=底面周長×高
圓柱體的體積 = 底面積 × 高

圓錐體的體積 = 底面積 × 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
幾何初步知識
直線沒有端點,兩端可以無限延長,不能測量長度。
射線有一個端點,一端可以無限延長,不能測量長度。
線段有兩個端點,不能延長,可以測量長度。
過一點可以畫無數條直線,過兩點可以畫一條直線。
在同一平面內,兩條直線的相互位置有相交和平行兩種。
在同一平面內,不相交的兩條直線叫做平行線。
一個頂點和從這個頂點出發的兩條射線組成的圖形叫做角。
大於0度小於90度的角叫銳角;大於90度小於180度的角叫鈍角。
三角形的內角和是180度;四邊形的內角和是360度。
直角是90度,平角是180度,周角是360度。
三角形按角可以分為直角三角形、銳角三角形和鈍角三角形。
三角形按邊可分為等邊三角形、等腰三角形和不等邊三角形;等邊三角形三條邊都相等,三個角都是60度。
長方形和正方形都是特殊的平行四邊形。
當圓、正方形和長方形的周長相等時,圓的面積最大,長方形的面積最小。
三角形具有穩定性,平行四邊形容易變形。
等底等高的情況下,三角形的面積是平行四邊形面積的一半。
圓是平面上的一種曲線圖形,圍成圓的曲線的長度叫做圓的周長;圓所在的平面的大小叫做圓的面積。
從圓心到圓上任意一點的線段叫做圓的半徑。
通過圓心,並且兩端都在圓上的線段叫做圓的直徑。
頂點在圓心的角叫做圓心角;圓內最長的線段是直徑。
圓有無數條半徑和無數條直徑。
在同一圓內,所有的半徑都相等,所有的直徑也都相等。
在同一圓內,直徑是半徑的2倍。
圓的周長與直徑的比值叫做圓周率,用字母∏來表示,是祖沖之最早計算出來的。∏≈ 3.14
圓心決定了圓的位置,半徑決定了圓的大小。
扇形的大小是由半徑和圓心角來決定的 。
圓規兩角間的距離指的是圓的半徑。
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形,摺痕所在的直線叫做對稱軸。
圓有無數條對稱軸,長方形有兩條對稱軸,正方形有四條對稱軸,等腰三角形有一條對稱軸,等邊三角形有三條對稱軸,等腰梯形有一條對稱軸,半圓或扇形都有一條對稱軸。
量的計量
常用的長度單位有千米、米、分米、厘米和毫米。
常用的面積單位有平方千米,公頃、平方米,平方分米和平方厘米。
常用的體積單位有立方米,立方分米,立方厘米。
常用的容積單位有升和毫升。1升=1000毫升。
立方分米就是升,立方厘米就是毫升。
常用的重量單位有噸,千克和克。
常用的人民幣單位有元、角、分。
常用的時間單位有世紀、年、月、日、時、分、秒。
1世紀=100年,1年=12月,大月31天,小月30天。
一年有12個月,分為四個季度,每個季度三個月。
每四年中有三個平年和一個閏年。平年2月有28天,閏年2月有29天。
代數初步知識
含有未知數的等式叫做方程。
求方程的解的過程叫做解方程。
兩個數相除又叫做兩個數的比;表示兩個比相等的式 子叫做比例。
比的後項不能為0。
比的前項除以後項的商,叫做比值。比值可以是整數、小數或分數。
比的前項和後項都乘上或除以相同的數(0除外),比值不變,叫做比的基本性質。
在比例里,兩個內項的積等於兩個外項的積,叫做比例的基本性質 。
圖上距離和實際距離的比叫做比例尺。
比例尺有數值比例尺和線段比例尺兩種。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做乘正比例的量,它們的關系叫做正比例關系。即: x ÷ y = k (一定)
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做乘反比例的量,它們的關系叫做反比例關系。即: x × y = k ( 一定 )
圓的半徑和面積不成比例 和 周長成正比例。
三角形的面積一定,底和高成反比例。
比例尺一定,圖上距離和實際距離成正比例。
一種商品先降價10%,再提價10%,價格比原來降低了。
甲比乙多25%,則乙比甲少20%。

數和數的運算
我們在數物體的時候,用來表示物體個數的1 ,2 ,3 …… 叫做自然數。0也是自然數,是最小的自然數,沒有最大的自然數。自然數都是整數。
把單位「l」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b = (b≠0)
分子和分母是互質數的分數叫做最簡分數。
真分數的倒數一定大於1,但假分數的倒數不一定小於1。
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變,叫做分數的基本性質。
小數的末尾添上「0」或者去掉「0」,小數的大小不變,這叫做小數的基本性質。
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
循環節從小數部分第一位就開始的叫做純循環小數;循環節不是從小數部分第一位開始的叫做混循環小數。
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數沒有單位。
整數a除以整數b( b≠0 ),除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者b能整除a 。
如果a能被b整除,我們就說a是b的倍數,b是a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它的本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
一個數,如果只有1和它本身兩個約數,叫做質數。
一個數,如果除了1和它本身,還有別的約數,叫做合數。
把一個合數寫成幾個質數相乘的形式,叫做分解質因數。
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
幾個數公有的約數叫做這幾個數的公約數,其中最大的一個數叫做這幾個數的最大公約數。
公約數只有1的兩個數,叫做互質數。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。一個自然數不是偶數就是奇數。
最小的偶數是0,最小的奇數是1 ,最小的質數是2 ,最小的合數是4 。
除了0和2以外,所有的偶數都是合數。
能同時被2、3、5整除的最小的兩位數是30,最小的三位數是120。
一個算式,如果只含有同一級運算,要按照從左往右的順序依次計算。如果含有兩級運算,要先算乘除,後算加減。如果有括弧,還要先算括弧裡面的,再算括弧外面的。
乘積是1的兩個數叫做互為倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
利息 = 本金 × 利率 × 時間
稅後利息 = 本金 × 利率 × 時間 ×80%

概念
數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
第一章 數和數的運算
(一)整數
整數的意義
自然數和0都是整數。
自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。

『拾』 求高中數學知識點總結(最全版)

高中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。