當前位置:首頁 » 基礎知識 » 初中三角函數的數學知識點
擴展閱讀
電話如何備注同學 2024-11-09 09:57:09
數學知識融匯 2024-11-09 09:52:12
徵信基礎產品有什麼 2024-11-09 09:46:35

初中三角函數的數學知識點

發布時間: 2022-08-24 06:00:13

① 初中數學三角函數所有知識點

三角函數是初中數學比較重要的一部分,下面我為大家總結了初中 數學 三角函數所有知識點,僅供大家參考。

三角函數基本知識

正弦(sin):角α的對邊比上斜邊

餘弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

餘切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

餘割(csc):角α的斜邊比上對邊

sin30°=1/2

sin45°=根號2/2

sin60°=根號3/2

cos30°=根號3/2

cos45°=根號2/2

cos60°=1/2

tan30°=根號3/3

tan45°=1

tan60°=根號3

兩角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三角函數重要變形公式

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)³;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

以上就是我為大家總結的初中數學 三角函數 所有知識點,僅供參考,希望對大家有所幫助。

② 三角函數知識點有哪些

三角函數知識點有:

1、一個三角形中,各邊和所對角的正弦之比相等,且該比值等於該三角形外接圓的直徑(半徑的2倍)長度。

2、角的內部到角的兩邊的距離相等的點在角的平分線上。

3、三角函數的反函數不是單值函數,因為它並不滿足一個自變數對應一個函數值的要求,其圖像與其原函數關於函數y=x對稱。

4、在三角形中,任意兩條邊的和除以第一條邊減第二條邊的差所得的商,等於這兩條邊對角的和的一半的正切除以第一條邊對角減第二條邊對角的差的一半的正切所得的商。

5、對於任意三角形,任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。

③ 初中三角函數的知識點有哪些,怎麼學習

初中數學銳角三角函數通常作為選擇題,填空題和應用題壓軸題出現,考察同學們靈活運用公式和定理能力,是中考一大難點之一。初中數學銳角三角函數知識點一覽:銳角三角函數定義,正弦(sin),餘弦(cos)和正切(tan)介紹,銳角三角函數公式(特殊三角度數的特殊值,兩角和公式半形公式,和差化積公式),銳角三角函數圖像和性質,銳角三角函數綜合應用題。
一、銳角三角函數定義
銳角三角函數是以銳角為自變數,以此值為函數值的函數。如圖:我們把銳角∠A的正弦、餘弦、正切和餘切都叫做∠A的銳角函數。
銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函數。初中數學主要考察正弦(sin),餘弦(cos)和正切(tan)。
正弦(sin)等於對邊比斜邊;sinA=a/c
餘弦(cos)等於鄰邊比斜邊;cosA=b/c
正切(tan)等於對邊比鄰邊;tanA=a/b
餘切(cot)等於鄰邊比對邊;cotA=b/a
二、銳角三角函數公式
關於初中三角函數公式,在考試中用的最多的就是特殊三角度數的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是兩角和公式,這是在初中數學考試中問答題中容易用到的三角函數公式。兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
除了以上常考的初中三角函數公示之外,還有半形公式和和差化積公式也在選擇題中用到。所以同學們還是要好好掌握。
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三、銳角三角函數圖像和性質
四、銳角三角函數綜合應用題
已知:一次函數y=-2x+10的圖象與反比例函數y=k/x(k>0)的圖象相交於A,B兩點(A在B的右側).
(1)當A(4,2)時,求反比例函數的解析式及B點的坐標;
(2)在(1)的條件下,反比例函數圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)當A(a,-2a+10),B(b,-2b+10)時,直線OA與此反比例函數圖象的另一支交於另一點C,連接BC交y軸於點D.若BC/BD=5/2,求△ABC的面積.
考點:
反比例函數綜合題;待定系數法求一次函數解析式;反比例函數與一次函數的交點問題;相似三角形的判定與性質.
解答:
解:(1)把A(4,2)代入y=k/x,得k=4×2=8.
∴反比例函數的解析式為y=8/x.
解方程組y=2x+10
y=8/x,得x=1 y=8
或x=4 y=2,
∴點B的坐標為(1,8);
(2)①若∠BAP=90°,
過點A作AH⊥OE於H,設AP與x軸的交點為M,如圖1,
對於y=-2x+10,
當y=0時,-2x+10=0,解得x=5,
∴點E(5,0),OE=5.
∵A(4,2),∴OH=4,AH=2,
∴HE=5-4=1.
∵AH⊥OE,∴∠AHM=∠AHE=90°.
又∵∠BAP=90°,
∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,
∴∠MAH=∠AEM,
∴△AHM∽△EHA,
∴AH/EH=MH/AH,
∴2/1=MH/2,
∴MH=4,
∴M(0,0),
可設直線AP的解析式為y=mx
則有4m=2,解得m=1/2,
∴直線AP的解析式為y=1/2x,
解方程組y=1/2x,
y=8/x,得x=4 y=2
或x=?4 y=?2,
∴點P的坐標為(-4,-2).
②若∠ABP=90°,
同理可得:點P的坐標為(-16,-1/2).
綜上所述:符合條件的點P的坐標為(-4,-2)、(-16,-1/2);
(3)過點B作BS⊥y軸於S,過點C作CT⊥y軸於T,連接OB,如圖2,
則有BS∥CT,∴△CTD∽△BSD,
∴CD/BD=CT/BS.
∵BC/BD=5/2,
∴CT/BS=CD/BD=3/2.
∵A(a,-2a+10),B(b,-2b+10),
∴C(-a,2a-10),CT=a,BS=b,
∴a/b=3/2
,即b=2/3a.
∵A(a,-2a+10),B(b,-2b+10)都在反比例函數y=k/x的圖象上,
∴a(-2a+10)=b(-2b+10),
∴a(-2a+10)=2/3
a(-2×2/3a+10).
∵a≠0,
∴-2a+10=2/3
(-2×2/3a+10),
解得:a=3.
∴A(3,4),B(2,6),C(-3,-4).
設直線BC的解析式為y=px+q,
則有2p+q=6
?3p+q=?4,
解得:p=2q=2,
∴直線BC的解析式為y=2x+2.
當x=0時,y=2,則點D(0,2),OD=2,
∴S△COB=S△ODC+S△ODB=1/2
ODCT+1/2ODBS=1/2×2×3+1/2×2×2=5.
∵OA=OC,
∴S△AOB=S△COB,
∴S△ABC=2S△COB=10. 以上就是初中數學銳角三角函數知識點總結,小編推薦同學繼續瀏覽《初中數學知識點專題匯總》。對於想要通過參加初中數學補習班來獲得優質的數學學習資源和學習技巧,使自身成績有所提升的同學,昂立新課程推薦以下課程:

初二數學雙師定向尖子班

初二數學名師網路輔導課

初三數學定向尖子班
初三數學名師網路輔導課

中考數學自招名師網課
(以上課程是熱門推薦課程,更多相關課程,可登陸官網瀏覽。)
初中數學學習課程分網路和面授,有小班制,大班制,1對1,1對3形式,授課校區分布在上海各個地域,面授班課時以昂立新課程官網頒布課時為主,具體費用可咨詢在線客服或撥打熱線4008-770-970。

④ 數學三角函數知識點整理有哪些

數學三角函數知識點整理有:

1、一個三角形中,各邊和所對角的正弦之比相等,且該比值等於該三角形外接圓的直徑(半徑的2倍)長度。

2、對於任意三角形,任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。

3、三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。

4、三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

5、全等三角形的對應邊相等,全等三角形的對應角相等。

⑤ 三角函數知識點有哪些

三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。

也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。

三角函數的反函數

三角函數的反函數,是多值函數。它們是反正弦arcsin x,反餘弦arccos x,反正切arctan x,反餘切arccot x等,各自表示其正弦、餘弦、正切、餘切、正割、餘割為x的角。

為限制反三角函數為單值函數,將反正弦函數的值y限在y=-π/2≤y≤π/2,將y為反正弦函數的主值,記為y=arcsin x。

相應地,反餘弦函數y=arccos x的主值限在0≤y≤π;反正切函數y=arctan x的主值限在-π/2<y<π/2;反餘切函數y=arccot x的主值限在0<y<π。

⑥ 初中數學三角函數知識點總結

三角函數是一個比較難的部分,下面我就大家整理一下初中數學三角函數知識點總結 ,僅供參考。

銳角三角函數的定義

銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),(餘割csc)都叫做角A的銳角三角函數。

正弦等於對邊比斜邊

餘弦等於鄰邊比斜邊

正切等於對邊比鄰邊

餘切等於鄰邊比對邊

正割等於斜邊比鄰邊

餘割等於斜邊比對邊

正切與餘切互為倒數

它的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。

三角函數的公式

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

cos30°=√3/2

cos45°=√2/2

cos60°=1/2

tan30°=√3/3

tan45°=1

tan60°=√3[1]

cot30°=√3

cot45°=1

cot60°=√3/3

和差化積

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

- ctgA+ctgBsin(A+B)/sinAsinB

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推導

sin3a=sin(2a+a)=sin2acosa+cos2asina

同角三角函數間的關系:

平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

·倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

以上就是我為大家整理的初中數學三角函數知識點總結 。

⑦ 初中數學三角函數公式歸納 有哪些知識點

初中數學,讓學生頭痛的很大一部分就是三角函數!很多同學對與三角函數中正弦、餘弦、正切、餘切中的公式容易混淆,做題的時候不能夠運用正確的公式,以下是我整理的內容,供大家參考。

初中數學三角函數公式

1.銳角三角函數公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

2.倍角三角函數公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(註:SinA^2是sinA的平方sin2(A))

3.三倍角公式

sin3α=4sinα*sin(π/3+α)sin(π/3-α)

cos3α=4cosα*cos(π/3+α)cos(π/3-α)

tan3a=tan a *tan(π/3+a)*tan(π/3-a)

4.三倍角公式推導

sin3a=sin(2a+a)=sin2acosa+cos2asina

5.輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)

sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2);tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

6.降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

還有哪些初中數學三角函數公式

1.三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

2.和差化積公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

3.倒數關系:

tanα.cotα=1

sinα.cscα=1

cosα.secα=1

4.商的關系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

5.平方關系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

初中數學三角函數公式一直是知識考察的重點,初中生一定要掌握以上的三角函數公式的知識點,是初中數學必不可少的知識點。實際上初中數學三角函數這塊內容還是比較好學的,只要掌握了公式的知識點,能夠熟練記憶這些公式,在初中數學考試中很容易就找到解答方法。