㈠ 初二數學上冊重點知識點總結
初中生在學習數學的過程中應該注意知識點的總結,下面總結了初二數學上冊知識點,供大家參考。
位置與坐標
1.確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2.平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。
3.軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
一次函數
(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
(二)函數三要素
1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。
2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。
3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。
(三)一次函數的表示方法
1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。
2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
3.圖像法:用圖象來表示函數關系的方法叫做圖象法。
(四)一次函數的性質
1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。
2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
全等三角形
1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
2.三角形全等的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
3.角平分線
(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。
(2)性質
①角平分線分得的兩個角相等,都等於該角的一半。
②角平分線上的點到角的兩邊的距離相等。
分式
(一)分式的運算
分式四則運算,順序乘除加減,
乘除同級運算,除法符號須變(乘),
乘法進行化簡,因式分解在先,
分子分母相約,然後再行運算,
加減分母需同,分母化積關鍵,
找出最簡公分母,通分不是很難,
變號必須兩處,結果要求最簡。
(二)分式的運演算法則
(1)約分
①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。
②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。
(2)公因式的提取方法
系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。
(3)除法
兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
(4)乘方
分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。
圖形的平移與旋轉
1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
2.平移性質
(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。
(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。
㈡ 八年級數學知識點總結
八年級數學知識點總結
在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。下面是我整理的關於八年級數學知識點總結,歡迎大家參考!
第十七章《反比例函數》知識點整理
1.定義:形如y= (k為常數,k≠0)的函數稱為反比例函數。
2.其他形式 xy=k (k為常數,k≠0)都是。
3.圖像:反比例函數的圖像屬於雙曲線。
反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。
有兩條對稱軸:直線y=x和 y=-x。 對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小。
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸
所作的垂線段與兩坐標軸圍成的矩形的面積。
第十八章 勾股定理
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那麼這個三角形是直角三角形。
3.經過證明被確認正確的命題叫做定理。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章 四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;
平行四邊形的對角相等。
平行四邊形的對角線互相平分。
平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
直角三角形斜邊上的中線等於斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的.性質: 矩形的四個角都是直角;
矩形的對角線平分且相等。AC=BD
矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;
菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
菱形的判定定理: 1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。 平行四邊形的重心是它的兩條對角線的交點。 三角形的三條中線交於疑點,這一點就是三角形的重心。 寬和長的比是 (約為0.618)的矩形叫做黃金矩形。
第二十章 數據的分析
1.算術平均數:
2.加權平均數:加權平均數的計算公式。
權的理解:反映了某個數據在整個數據中的重要程度。
而是以比的或百分比的形式出現及頻數分布表求加權平均數的方法。
3.將一組數據按照由小到大(或由大到小)的順序排列,如果數據的的個數是奇數,則處於中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
4.一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
5.一組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。
6.方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
數據的收集與整理的步驟:1.收集數據 2.整理數據 3.描述數據 4.分析數據 5.撰寫調查報告 6.交流
7. 平均數受極端值的影響眾數不受極端值的影響,這是一個優勢,中位數的計算很少不受極端值的影響。
;㈢ 初二數學知識點總結 上冊的
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理三角形兩邊的和大於第三邊
16 推論三角形兩邊的差小於第三邊
17 三角形內角和定理三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
㈣ 八年級上冊小結並串聯第1~3章主要數學知識和解題思想方法並製作思維導圖
摘要 如何繪制八年級上冊數學思維導圖
㈤ 蘇教版八年級上數學期末復習知識點總結+例題(完美版)
全等三角形
一、知識框架:
㈥ 求湘教版初二數學上冊第一章知識點
《全等三角形》知識總結
1、 兩個性質:
全等三角形的性質:全等三角形的對應角相等,全等三角形的對應邊相等;
角平分線的性質:角平分線上的點到角兩邊的距離相等。
2、 兩種判定:
全等三角形的判定:SSS SAS ASA AAS HL
角平分線的判定:角的內部到角兩邊距離相等的點在角的平分線上。
3、 兩個畫法:
已知三邊做三角形;
角平分線的畫法。
4、 兩個結論:
到三角形三邊距離相等的點有四個,其中內部有一個。
如果兩個三角形的底邊相等,那麼它們的面積比就等於它們的高之比;如果兩個三角形的高相等,那麼它們的面積比就等於它們的底邊之比。
5、 一種方法:
證明兩個角相等或者兩條線段相等,可以通過證明它們所在的兩個三角形全等來證明。
㈦ 八年級上冊數學知識點歸納總結
初中生學習數學要注意熟練掌握知識點,以下是我為大家整理的八年級上冊數學知識點,希望對大家學習數學有幫助。
八年級數學知識點上冊
軸對稱圖形1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關於這條直線(成軸)對稱。2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點3、軸對稱圖形和軸對稱的區別與聯系4.軸對稱的性質①關於某直線對稱的兩個圖形是全等形。②如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線。③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。④如果兩個圖形的對應點連線被同條直線垂直平分,那麼這兩個圖形關於這條直線對稱。
初中數學知識點八年級上冊
三角形的三邊關系定理及推論(1)三角形三邊關系定理:三角形的兩邊之和大於第三邊。推論:三角形的兩邊之差小於第三邊。(2)三角形三邊關系定理及推論的作用:①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。
三角形的內角和定理及推論三角形的內角和定理:三角形三個內角和等於180°。推論:①直角三角形的兩個銳角互余。②三角形的一個外角等於和它不相鄰的來兩個內角的和。③三角形的一個外角大於任何一個和它不相鄰的內角。註:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。
三角形的面積=1/2×底×高
精選數學知識點八年級上冊
因式分解:把一個多項式化成了幾個整式的積的形式,叫做這個多項式的因式分解,也叫做把這個多項式分解因式。
因式分解的方法:口訣:一提、二看、三檢查。(1)提公因式法:公因式的確定:系數的最大公約數、相同因式的最低次冪.注意公式:a+b=b+a;a-b=-(b-a)(2)公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(3)十字相乘法公式:x2+(p+q)x+pq=(x+p)(x+q)
解分式方程的步驟:(1)方程兩邊乘最簡公分母(去分母),得(2)解得(3)檢驗:當時,最簡公分母≠0(或最簡公分母=0)(4)所以,原分式方程的解為(或所以,原分式方程無解)
以上就是我為大家整理的八年級上冊數學知識點,希望對所有初中生學習數學有一點幫助。
㈧ 初二上冊數學的知識點
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角