當前位置:首頁 » 基礎知識 » 考研數學三線代知識點
擴展閱讀

考研數學三線代知識點

發布時間: 2022-08-23 08:01:47

『壹』 考研數學考的是什麼內容

《數學》網路網盤免費下載

鏈接: https://pan..com/s/1B9X8x_q8Nbfez8IadsjyZw 提取碼: 2wnd

考研時的知識點基本上都是高數、線代與概率論的知識點。一般統考不會超過課本知識,但是難度比課本習題難度大很多。一般可以參考每年的數學考研大綱。數學一考研數學內容:

高等數學

一、函數、極限、連續

考試內容:函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數

二、一元函數微分學

考試內容:導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法;線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數。

一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

四、向量代數和空間解析幾何

考試內容:向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程的概念

平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程

五、多元函數微分學

考試內容:多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用

六、多元函數積分學

考試內容:二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用

七、無窮級數

考試內容常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域

冪級數的和函數冪級數在其收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和餘弦級數

八、常微分方程

考試內容:常微分方程的基本概念變數可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變數代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高於二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用

線性代數

一、行列式

考試內容行列式的概念和基本性質行列式按行(列)展開定理

二、矩陣

考試內容:矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算

三、向量

考試內容:向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法規范正交基正交矩陣及其性質

四、線性方程組

考試內容:線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解

五、矩陣的特徵值和特徵向量

考試內容:矩陣的特徵值和特徵向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣

六、二次型

考試內容:二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標准形和規范形用正交變換和配方法化二次型為標准形二次型及其矩陣的正定性

概率論與數理統計

一、隨機事件和概率

考試內容:隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗

二、隨機變數及其分布

考試內容:隨機變數隨機變數分布函數的概念及其性質離散型隨機變數的概率分布連續型隨機變數的概率密度常見隨機變數的分布隨機變數函數的分布

三、多維隨機變數及其分布

考試內容:多維隨機變數及其分布二維離散型隨機變數的概率分布、邊緣分布和條件分布二維連續型隨機變數的概率密度、邊緣概率密度和條件密度隨機變數的獨立性和不相關性常用二維隨機變數的分布兩個及兩個以上隨機變數簡單函數的分布

四、隨機變數的數字特徵

考試內容:隨機變數的數學期望(均值)、方差、標准差及其性質隨機變數函數的數學期望矩、協方差、相關系數及其性質

五、大數定律和中心極限定理

考試內容:切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理

六、數理統計的基本概念

考試內容:總體個體簡單隨機樣本統計量樣本均值樣本方差和樣本矩分布分布分布分位數正態總體的常用抽樣分布

七、參數估計

考試內容:點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標准區間估計的概念單個正態總體的均值和方差的區間估計兩個正態總體的均值差和方差比的區間估計

八、假設檢驗

考試內容:顯著性檢驗假設檢驗的兩類錯誤單個及兩個正態總體的均值和方差的假設檢驗



『貳』 2013考研數學三復習要點

知識點我就不一一給你說了。數學三也是考那三門小科目,只是考試范圍比一和二少,也簡單些。給你貼一個數學的復習方法總結吧,望採納。

數學:
1、李永樂李正元《數學復習全書、》*****,同樣效用的有陳文登的《數學復習指南》****,不過文登的重技巧,精華在微積分,永樂的重基礎,而且從近三年的考試來看,全書更加適合考研,文登的有部分內容超綱。如果已經買了文登那本復習指南,強烈推薦再買本永樂的《線性代數輔導講義》*****,因為永樂的線代深入淺出,非常好,可以彌補文登的線代那部分的不足。想考更高分的戰友可以兩本都選(個人認為全書是必備的);
2、數學基礎過關660題*****,不是必備,但是在前期作為打基礎的練習非常不錯。
3、歷年真題。最好的有兩個版本,一個是永樂的《歷年試題解析》*****,好處在於按章節分類,題目後面還有評注,歷年試卷放前面可以自測;另一個西安交大的武忠祥的《歷年數學考研試題研究(數學四)》****,好處在於按章節分類,還有考試考點分析和分類統計。每章後面有同步練習。如果買不到這兩本,其他任何版本的真題都一樣***。還有一個推薦大家買的就是可以單買一本聚焦FOCUS的考研真題集*****,性價比極高,只要2元,多買兩本都不會虧,因為真題多做幾遍分數就多長幾分。詳解就算了。
4、《數學最後沖刺超越135分》*****;或者文登的《題型集粹與練習題集》****作為最後沖刺階段的查漏補缺。
5、李永樂《數學全真模擬經典400題》至少做三遍*****。其他的模擬題不要多買,雖然說是題海戰術,但是太多了浪費,而且不做影響心情。恩波的模擬題***,考試蟲的模擬題***,可以下載到合工大的題目最好****,跟真題比較接近
6、另外比較好的輔導書有《考研數學單項選擇題解題方法與技巧》****和概率論與數理統計講義(提高篇)****。有條件的可以下載新東方的網路課件,這個課件已經足夠了,最好能下到永樂05年的線性代數講課*****,非常經典,還有06費允傑的概率講課也非常經典*****。其他田根寶的線代和概率課件就不用了,不推薦;還有文登的沖刺講課也沒有必要,輔導班就更加不用上了。原則上是能自己看書就不要課件,因為聽課非常浪費時間。實在基礎不行就聽課吧。
記住一點,好的書可以讓你更加快捷的到達終點。但是書不在多,一定要多做幾遍並且總結方法。課件是非常浪費時間的,能看書就不要使用課件。

『叄』 考研數學三中的線代的學習技巧

說實話,線性代數是數三裡面最好拿分的一個部分,一般考研題目中線性代數的題型基本都是平時解題過程中經常遇到的類型,而且對於線性代數來說你幾乎可以猜到考研的兩道大題中會考到的幾種類型(題目做多了你就會知道,線性代數想要出怪題也不是那麼容易的),相對來說,它不具備高數概率論的靈活性,你可以按照李永樂的復習全書來看,考研線性代數題目的類型絕對不會出到全書以外的題目,他的書中線性代數包含的類型要是看懂了考研線性代數也就基本沒問題了

『肆』 線性代數必備知識點

以下是考研數學線性代數主要考點的介紹:

一、向量與線性方程組

向量與線性方程組是整個線性代數部分的核心內容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎性章節,而其後兩章特徵值和特徵向量、二次型的內容則相對獨立,可以看作是對核心內容的擴展。

向量與線性方程組的內容聯系很密切,很多知識點相互之間都有或明或暗的相關性。復習這兩部分內容最有效的方法就是徹底理順諸多知識點之間的內在聯系,因為這樣做首先能夠保證做到真正意義上的理解,同時也是熟練掌握和靈活運用的前提。

這部分的重要考點一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節的各種內在聯系。

(1)齊次線性方程組與向量線性相關、無關的聯系

齊次線性方程組可以直接看出一定有解,因為當變數都為零時等式一定成立——印證了向量部分的一條性質「零向量可由任何向量線性表示」。

齊次線性方程組一定有解又可以分為兩種情況:1、有唯一零解;2、有非零解。當齊次線性方程組有唯一零解時,是指等式中的變數只能全為零才能使等式成立,而當齊次線性方程組有非零解時,存在不全為零的變數使上式成立;但向量部分中判斷向量組是否線性相關、無關的定義也正是由這個等式出發的。故向量與線性方程組在此又產生了聯系——齊次線性方程組是否有非零解對應於系數矩陣的列向量組是否線性相關。可以設想線性相關、無關的概念就是為了更好地討論線性方程組問題而提出的。

(2)齊次線性方程組的解與秩和極大無關組的聯系

同樣可以認為秩是為了更好地討論線性相關和線性無關而引入的。秩的定義是「極大線性無關組中的向量個數」。經過「秩-線性相關、無關-線性方程組解的判定」的邏輯鏈條,就可以判定列向量組線性相關時,齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個線性無關的解向量(基礎解系)線性表示。

(3)非齊次線性方程組與線性表示的聯系

非齊次線性方程組是否有解對應於向量是否可由列向量組線性表示,使等式成立的一組數就是非齊次線性方程組的解。

二、行列式與矩陣

行列式、矩陣是線性代數中的基礎章節,從命題人的角度來看,可以像潤滑油一般結合其它章節出題,因此必須熟練掌握。

行列式的核心內容是求行列式——具體行列式的計算和抽象行列式的計算。其中具體行列式的計算又有低階和高階兩種類型,主要方法是應用行列式的性質及按行(列)展開定理化為上下三角行列式求解;而對於抽象行列式而言,考點不在如何求行列式,而在於結合後面章節內容的比較綜合的題。

矩陣部分出題很靈活,頻繁出現的知識點包括矩陣各種運算律、矩陣相關的重要公式、矩陣可逆的判定及求逆、矩陣的秩的性質、初等矩陣的性質等。

三、特徵值與特徵向量

相對於前兩章來說,本章不是線性代數這門課的理論重點,但卻是一個考試重點。其原因是解決相關題目要用到線代中的大量內容——既有行列式、矩陣又有線性方程組和線性相關性,「牽一發而動全身」。

本章知識要點如下:

1.特徵值和特徵向量的定義及計算方法就是記牢一系列公式和性質。

2.相似矩陣及其性質,需要區分矩陣的相似、等價與合同:

3.矩陣可相似對角化的條件,包括兩個充要條件和兩個充分條件。充要條件一是n階矩陣有n個線性無關的特徵值;二是任意r重特徵根對應有r個線性無關的特徵向量。

4.實對稱矩陣及其相似對角化,n階實對稱矩陣必可正交相似於以其特徵值為對角元素的對角陣。

四、二次型

這部分所講的內容從根本上講是特徵值和特徵向量的一個延伸,因為化二次型為標准型的核心知識為「對於實對稱矩陣,必存在正交矩陣使其可以相似對角化」,其過程就是上一章相似對角化在為實對稱矩陣時的應用。

這四個方面是歷年考研數學線代部分的重點,希望考生以此為重點,由點及面,復習好線性代數這部分。

『伍』 考研數學三大題考的知識點是什麼

根據往年情況
高數:求極限,二重積分,微分方程,中值定理的應用,
線代:矩陣方程,正定二次型
概率:矩估計,函數的概率分布

『陸』 考研數學三具體內容,都要考哪些知識。

考研數學三大綱包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
考試內容:
一、微積分
函數、極限、連續
考試要求
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性.單調性.周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.了解數列極限和函數極限(包括左極限與右極限)的概念.
6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質.
二、一元函數微分學
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數
會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解羅爾(Rolle)定理.拉格朗日(
Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(註:在區間
內,設函數具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.
9.會描述簡單函數的圖形.
三、一元函數積分學
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法.
2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.
4.了解反常積分的概念,會計算反常積分.
四、多元函數微積分學
考試要求
1.了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數.
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決簡單的應用問題.
5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標.極坐標).了解無界區域上較簡單的反常二重積分並會計算.
五、無窮級數
考試要求
1.了解級數的收斂與發散.收斂級數的和的概念.
2.了解級數的基本性質和級數收斂的必要條件,掌握幾何級數及級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法.
3.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.
4.會求冪級數的收斂半徑、收斂區間及收斂域.
5.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數.
6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麥克勞林(Maclaurin)展開式.
六、常微分方程與差分方程
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變數可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法.
3.會解二階常系數齊次線性微分方程.
4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函數.正弦函數.餘弦函數的二階常系數非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數線性差分方程的求解方法.
7.會用微分方程求解簡單的經濟應用問題.
七、線性代數
行列式
考試內容:行列式的概念和基本性質
行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
八、矩陣
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則.
九、向量
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則.
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.
5.了解內積的概念.掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
十、線性方程組
考試要求
1.會用克萊姆法則解線性方程組.
2.掌握非齊次線性方程組有解和無解的判定方法.
3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組解的結構及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.
十一、矩陣的特徵值和特徵向量
考試要求
1.理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法.
2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特徵值和特徵向量的性質.
十二、二次型
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.
3.理解正定二次型.正定矩陣的概念,並掌握其判別法.
十三、概率統計
隨機事件和概率
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等.
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.
十四、隨機變數及其分布
考試要求
.理解隨機變數的概念,理解分布函數的概念及性質,會計算與隨機變數相聯系的事件的概率.
2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布
、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.
3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.
4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布
、指數分布及其應用,其中參數為 的指數分布 的概率密度為
5.會求隨機變數函數的分布.
十五、多維隨機變數及其分布
考試要求
1.理解多維隨機變數的分布函數的概念和基本性質.
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布.
3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系.
4.掌握二維均勻分布和二維正態分布
,理解其中參數的概率意義.
5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布.
十六、隨機變數的數字特徵
考試要求
理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵.
2.會求隨機變數函數的數學期望.
3.了解切比雪夫不等式.
十七、大數定律和中心極限定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律).
2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率.
十八、數理統計的基本概念
考試要求
1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、 分布、分布和分布得上側 分位數,會查相應的數值表.
3.掌握正態總體的樣本均值.樣本方差.樣本矩的抽樣分布.
4.了解經驗分布函數的概念和性質.
十九、參數估計
考試內容:點估計的概念 估計量與估計值 矩估計法
最大似然估計法
考試要求
1.了解參數的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.

『柒』 考研數學三,涉及到的高中數學知識點有哪些

  1. 根據工學、經濟學、管理學各學科、專業對碩士研究生入學所應具備的數學知識和能力的不同要求,碩士研究生入學統考數學試卷分為3種,其中針對工學門類的為數學一、數學二,針對經濟學和管理學門類的為數學三。

  2. 須使用數學三的招生專業

    1.經濟學門類的各一級學科。

    2.管理學門類中的工商管理、農林經濟管理一級學科。

    3.授管理學學位的管理科學與工程一級學科。

  3. 考試大綱:考試科目:微積分、線性代數、概率論與數理統計

    試卷結構

    1、試卷滿分及考試時間

    試卷滿分為150分,考試時間為180分鍾.

    2、答題方式

    答題方式為閉卷、筆試.

    3、試卷內容結構

    微積分56%

    線性代數22%

    概率論與數理統計22%

    4、試卷題型結構

    試卷題型結構為:

    單項選擇題選題8小題,每題4分,共32分

    填空題6小題,每題4分,共24分

    解答題(包括證明題)9小題,共94分

  4. 中學的叫初等數學

    大學的教高等數學,

    不涉及所學專業知識的情況下,考研數學是不考幾何部分的,也就是不涉及各種圓。

  5. 只不過有的時候講課有講,壁如微積分部分老師應該會提一下割圓術什麼的

    都是導數微分等代數部分的,幾何是不學的。

  6. 高中一般有以下內容:

    集合與簡易邏輯,函數,三角函數,解三角形,平面解析幾何,立體解析幾何,平面向量,空間向量,統計與概率,排列組合與二項式,圓錐曲線,導數,復數,數列,不等式;其中涉及的思想有:數形結合思想,轉化思想,整體思想,等等。

  7. 初等數學是微積分的基礎;微積分是線代和概率的基礎。

  8. 高數中的二重積分對求概率論里的分布是有很大影響的,另外,線性代數里的線性相關與線性無關有影響到高數中求解微分方程。

  9. 四則運算,代數式只學到了一元,函數也是初等函數中的一次二次函數,反比例函數,指數對數函數,基本的三角函數等等。等到了高數里,就要學到多元函數,多元方程,高階導數,甚至反雙曲函數(還好只學不考),還有各種以人名命名的公式定理。

『捌』 考研數學三,高數,線代,概論。這三個先從那本書開始學習

一、先看高數
對待高數要進行系統規劃 高等數學是一門很抽象的學科, 理解的時候, 不要糾結於表面的概念, 要在思考的時候, 在腦中構建一個模型,這個很像編程時,思考內存模型。或者構建自己的復習思路,當復習到高數後面的知識點時,要結合前面的知識點,最後把學到的知識整體聯系起來。
二、再看線代
線代部分要夯實知識點,線性代數在考研數學中難度較高等數學來說要簡單得多, 但是考試題通常需要結合很多 知識點才能解答出來。 所以考生要抓住寒假這段時間踏踏實實看一遍線性代數的參考書, 然後自己做出總結,並將各知識點串聯在一起,結合少量習題理解知識點考核重點即可。
三、最後看概率
概論論復習要以參考書為主 概率論與數理統計在考研數學初試中題型比較固定,一般情況下難度中等

『玖』 考研數學三是考哪些知識點那些書

數學三是針對考經濟和管理的研究生,高數、線代、概率論都要考,但難度比數學一要小很多,知識點也比數學一少考。
其中高數三的三重積分、曲線積分、曲面積分等知識點是不考的,線代的向量不考,概率論後面的區間估計那塊的一些知識點也不考。
如果考數學三,建議把基礎打打好,到到考場上不粗心,把會的都寫寫好,分應該不會低。
數學一的話,難度比數學三要大一些,下的功夫也要大。