⑴ 圓周運動的重點是.....
1.向心力公式(包括周期,角速度,線速度三個公式,且這些公式只適用於勻速圓周運動和豎直平面圓周運動的最高點和最低點)
2.周期,角速度,線速度之間的轉化(適用於一切圓周運動)
3.生活中圓周運動的幾個模型:火車拐彎模型,汽車過拱橋模型,水流星模型,桿頂球模型,球型內壁模型,環形管模型等
⑵ 勻速圓周運動的相關公式及向心力的相關知識點
線速度=經過的弧長【除以】所用時間
角速度=轉過的角度【除以】所用時間
線速度=半徑【乘以】角速度
周期=2π【除以】角速度=2π【乘以】半徑再除以線速度
轉速=線速度【除以】2π【乘以】半徑=角速度【除以】2π=1【除以】周期
向心力:當一個質點做圓周運動時,質點所受到的合外力或者合外力的某一個分力一定會指向一個固定的圓心。就是這個不斷改變質點運動方向並始終指向圓心的力,就是向心力。
⑶ 高中物理圓周運動模型有哪些
網頁鏈接
請參看以上網路文庫,謝謝。
⑷ 圓周運動有關筆記
勻速圓周運動的特點:軌跡是圓,角速度,周期,線速度的大小(註:因為線速度是矢量,"線速度"大小是不變的,而方向時時在變化)和向心加速度的大小不變,且向心加速度方向總是指向圓心。
線速度定義:質點沿圓周運動通過的弧長ΔL與所用的時間Δt的比值叫做線速度,或者角速度與半徑的乘積。
線速度的物理意義:描述質點沿圓周運動的快慢,是矢量。
角速度的定義:半徑轉過的弧度(弧度制:360°=2π)與所用時間t的比值。
周期的定義:作勻速圓周運動的物體,轉過一周所用的時間。
轉速的定義:作勻速圓周運動的物體,單位時間所轉過的圈數。線速度
線速度 ,角速度
由以上可推導出線速度v=ωr,
求線速度,除了可以用 ,也可推導出v=2πr/T(註:T為周期)=ωr=2πrn(註:n代表轉速,n與T可以互相轉換,公式為T=1/n),π代表圓周率
同樣的,求角速度可以用ω=弧度/t =2π/T=v/r=2πn
其中S為弧長,r指半徑,V為線速度,a為加速度,T為周期,ω為角速度(單位:rad/s)。
任何物體在作圓周運動時需要一個向心力,因為它在不斷改變速度。對象的速度的速率大小不變,但方向一直在改變。只有合適大小的向心力才能維持物體在圓軌道上運動。這個加速度(速度是一個矢量,改變方向的同時可以不改變大小)是由向心力提供的,如果不具備這一條件,物體將脫離圓軌道。注意,向心加速度是反映線速度方向改變的快慢。
物體在作圓周運動時速度的方向相切於圓周路徑。勻速圓周運動物體所受合 力的方向一直指向圓心,即此來改變速度的方向。
向心力可以使物體不脫離軌道。一個很好的例子是重 力。 地面重力給人造衛星必要的力使其在沿軌道運動。
物理學上,向心力與物體速度的平方及它的質量和半徑倒數成正比:
F = mv^2/r,F=mω^2r(v是線速度,ω是角速度)
所以如果我們知道了力大小,質量,半徑,我們可以算出對象旋轉速度。 如果我們知道了速度,質量,半徑,我們可以算出力大小。符號記為如下:
F = ma
是的,合外 力=質量乘以加速度,所以:
a = v^2/r =(2π)^2r/T^2
質量符號去除—用 F和 ma 取代. 因此求加速度可以不用知道物體的質量。
當一質點在一平 面做圓周運動時在另一正交平面的射影是做簡 諧 運 動,與彈簧振子的運動形式一樣,加速度在不斷變化中。
如果物體沿半徑是R的圓周作勻速圓周運動,運動一周的時間為T,則線速度的大小等於角速度大小和半徑R的乘積.
v=ωR,使用這一公式時應注意,角度的單位一定要用弧度,只有角速度的單位是弧度/秒時,上述公式才成立.1、v(線 速 度)=l/t=2πr/T=ωr=2πrf=2πnr(l代表弧長,t代表時間,r代表半徑,n為頻率,ω為角速度)
2、ω(角 速 度)=θ/t=2π/T=2πf(θ表示角度或者弧度)
3、T(周 期)=2πr/v=2π/ω
4、f(頻 率)=1/T
6、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2
7、an(向 心 加 速 度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2
8、繩子拉球過頂點時重力充當向心力,即mg=mv^2/r,因此最小速度為v=(gr)^(1/2)
9、Jmax(功最大值)=Fn×π r
桿拉球時,v過頂點的最小速度為0勻速圓周運動向心力公式的推導
設一質點在A處的運動速度為Va,在運動很短時間⊿t後,到達B點,設此是的速度為Vb
由於受向心力的作用而獲得了一個指向圓心
速度⊿v,在⊿v與Va的共同作用下而運動到B點,達到Vb的速度
則矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va
用幾何的方法可以得到Va與Vb的夾 角等於OA與OB的夾角,當⊿t非常小時
⊿v/v=s/r(說明:由於質點做勻速圓周運動,所以Va=Vb=v,s表示弧長,r表示半徑)
所以⊿v=sv/r
⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示線速度
所以a=v^2/r=rω^2=r4π^2/T^2=r4π^2n^2
F(向心力)=ma=mv^2/r=mrω^2=m4π^2/T^2r
將平面里的 二 維 勻速圓周運動一維化
建立一個模型:質量為m的小球與一勁度系 數為k的彈簧(原長無限短)相連,在平 面 直 角 坐 標 系x-y里做角速度為ω,半徑為A的勻速圓 周 動。
此時F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m
在x軸上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ)
同理,y軸上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ)
⑸ 物理有關圓周運動都有什麼知識點,和公式及解題方法(高一必修二的)詳細點,不介意直接
我多的是,給你2份:
(1)講幾個模型吧 模型是物理學中重要的部分哦
一.平拋運動
S水平位移 h豎直位移 Vo水平初速度 Vt落地速度(和速度)t運動時間
g豎直加速度
重要公式:t=更號(2h\g) S=Vo*t
Vt與水平面的夾角的正切值(tan)=gh\Vo
注意一種考點 開摩托車過坑
二.豎直平面內的勻速圓周運動
幾個連接狀態的 分類 臨界條件
http://..com/question/94625405.html
看吧 我回答的 不算抄襲
三.勻速圓周運動實例分析
書上有 火車轉彎 拱形橋面
主要了解 向心力由什麼力提供 還有臨界條件
四.牛頓3定理 不用說了吧 這個都不復習 你可以不用考了
五.萬有引力定律公式的變形 主要考給你幾個不同的情況中萬有引力的比值 一般不會給你幾個數叫你算啦 如果這樣就太簡單了
六.雙星模型
七.動能定理
八.機械能守恆定理
差不多老
(2)高一物理公式總結
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=S/t (定義式) 2.有用推論Vt^2 –Vo^2=2as
3.中間時刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0
8.實驗用推論ΔS=aT^2 ΔS為相鄰連續相等時間(T)內位移之差
9.主要物理量及單位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
時間(t):秒(s) 位移(S):米(m) 路程:米 速度單位換算:1m/s=3.6Km/h
註:(1)平均速度是矢量。(2)物體速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是決定式。(4)其它相關內容:質點/位移和路程/s--t圖/v--t圖/速度與速率/
2) 自由落體
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(從Vo位置向下計算) 4.推論Vt^2=2gh
注:(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速度直線運動規律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下。
3) 豎直上拋
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推論Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值。(2)分段處理:向上為勻減速運動,向下為自由落體運動,具有對稱性。(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動 萬有引力
1)平拋運動
1.水平方向速度Vx= Vo 2.豎直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.豎直方向位移(Sy)=gt^2/2
5.運動時間t=(2Sy/g)1/2 (通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向與水平夾角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向與水平夾角α: tgα=Sy/Sx=gt/2Vo
註:(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運動與豎直方向的自由落體運動的合成。(2)運動時間由下落高度h(Sy)決定與水平拋出速度無關。(3)θ與β的關系為tgβ=2tgα 。(4)在平拋運動中時間t是解題關鍵。(5)曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期與頻率T=1/f 6.角速度與線速度的關系V=ωR
7.角速度與轉速的關系ω=2πn (此處頻率與轉速意義相同)
8.主要物理量及單位: 弧長(S):米(m) 角度(Φ):弧度(rad) 頻率(f):赫(Hz)
周期(T):秒(s) 轉速(n):r/s 半徑(R):米(m) 線速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
註:(1)向心力可以由具體某個力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直。(2)做勻速度圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,但動量不斷改變。
3)萬有引力
1.開普勒第三定律T2/R3=K(=4π^2/GM) R:軌道半徑 T :周期 K:常量(與行星質量無關)
2.萬有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它們的連線上
3.天體上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天體半徑(m)
4.衛星繞行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步衛星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天體運動所需的向心力由萬有引力提供,F心=F萬。(2)應用萬有引力定律可估算天體的質量密度等。(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同。(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小。(5)地球衛星的最大環繞速度和最小發射速度均為7.9Km/S。
機械能
1.功
(1)做功的兩個條件: 作用在物體上的力.
物體在里的方向上通過的距離.
(2)功的大小: W=Fscosa 功是標量 功的單位:焦耳(J)
1J=1N*m
當 0<= a <派/2 w>0 F做正功 F是動力
當 a=派/2 w=0 (cos派/2=0) F不作功
當 派/2<= a <派 W<0 F做負功 F是阻力
(3)總功的求法:
W總=W1+W2+W3……Wn
W總=F合Scosa
2.功率
(1) 定義:功跟完成這些功所用時間的比值.
P=W/t 功率是標量 功率單位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一個表達式: P=Fvcosa
當F與v方向相同時, P=Fv. (此時cos0度=1)
此公式即可求平均功率,也可求瞬時功率
1)平均功率: 當v為平均速度時
2)瞬時功率: 當v為t時刻的瞬時速度
(3) 額定功率: 指機器正常工作時最大輸出功率
實際功率: 指機器在實際工作中的輸出功率
正常工作時: 實際功率≤額定功率
(4) 機車運動問題(前提:阻力f恆定)
P=Fv F=ma+f (由牛頓第二定律得)
汽車啟動有兩種模式
1) 汽車以恆定功率啟動 (a在減小,一直到0)
P恆定 v在增加 F在減小 尤F=ma+f
當F減小=f時 v此時有最大值
2) 汽車以恆定加速度前進(a開始恆定,在逐漸減小到0)
a恆定 F不變(F=ma+f) V在增加 P實逐漸增加最大
此時的P為額定功率 即P一定
P恆定 v在增加 F在減小 尤F=ma+f
當F減小=f時 v此時有最大值
3.功和能
(1) 功和能的關系: 做功的過程就是能量轉化的過程
功是能量轉化的量度
(2) 功和能的區別: 能是物體運動狀態決定的物理量,即過程量
功是物體狀態變化過程有關的物理量,即狀態量
這是功和能的根本區別.
4.動能.動能定理
(1) 動能定義:物體由於運動而具有的能量. 用Ek表示
表達式 Ek=1/2mv^2 能是標量 也是過程量
單位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 動能定理內容:合外力做的功等於物體動能的變化
表達式 W合=ΔEk=1/2mv^2-1/2mv0^2
適用范圍:恆力做功,變力做功,分段做功,全程做功
5.重力勢能
(1) 定義:物體由於被舉高而具有的能量. 用Ep表示
表達式 Ep=mgh 是標量 單位:焦耳(J)
(2) 重力做功和重力勢能的關系
W重=-ΔEp
重力勢能的變化由重力做功來量度
(3) 重力做功的特點:只和初末位置有關,跟物體運動路徑無關
重力勢能是相對性的,和參考平面有關,一般以地面為參考平面
重力勢能的變化是絕對的,和參考平面無關
(4) 彈性勢能:物體由於形變而具有的能量
彈性勢能存在於發生彈性形變的物體中,跟形變的大小有關
彈性勢能的變化由彈力做功來量度
6.機械能守恆定律
(1) 機械能:動能,重力勢能,彈性勢能的總稱
總機械能:E=Ek+Ep 是標量 也具有相對性
機械能的變化,等於非重力做功 (比如阻力做的功)
ΔE=W非重
機械能之間可以相互轉化
(2) 機械能守恆定律: 只有重力做功的情況下,物體的動能和重力勢能
發生相互轉化,但機械能保持不變
表達式: Ek1+Ep1=Ek2+Ep2 成立條件:只有重力做功
回答者: 煮酒彈劍愛老莊 - 高級經理 六級 1-28 20:51
高中物理公式,規律匯編表
一,力學
胡克定律: F = kx (x為伸長量或壓縮量;k為勁度系數,只與彈簧的原長,粗細和材料有關)
重力: G = mg (g隨離地面高度,緯度,地質結構而變化;重力約等於地面上物體受到的地球引力)
3 ,求F,的合力:利用平行四邊形定則.
注意:(1) 力的合成和分解都均遵從平行四邊行法則.
(2) 兩個力的合力范圍: F1-F2 F F1 + F2
(3) 合力大小可以大於分力,也可以小於分力,也可以等於分力.
4,兩個平衡條件:
共點力作用下物體的平衡條件:靜止或勻速直線運動的物體,所受合外力為零.
F合=0 或 : Fx合=0 Fy合=0
推論:[1]非平行的三個力作用於物體而平衡,則這三個力一定共點.
[2]三個共點力作用於物體而平衡,其中任意兩個力的合力與第三個力一定等值反向
(2 )有固定轉動軸物體的平衡條件:力矩代數和為零.(只要求了解)
力矩:M=FL (L為力臂,是轉動軸到力的作用線的垂直距離)
5,摩擦力的公式:
(1) 滑動摩擦力: f= FN
說明 : ① FN為接觸面間的彈力,可以大於G;也可以等於G;也可以小於G
② 為滑動摩擦因數,只與接觸面材料和粗糙程度有關,與接觸面積大小,接觸面相對運動快慢以及正壓力N無關.
(2) 靜摩擦力:其大小與其他力有關, 由物體的平衡條件或牛頓第二定律求解,不與正壓力成正比.
大小范圍: O f靜 fm (fm為最大靜摩擦力,與正壓力有關)
說明:
a ,摩擦力可以與運動方向相同,也可以與運動方向相反.
b,摩擦力可以做正功,也可以做負功,還可以不做功.
c,摩擦力的方向與物體間相對運動的方向或相對運動趨勢的方向相反.
d,靜止的物體可以受滑動摩擦力的作用,運動的物體可以受靜摩擦力的作用.
6, 浮力: F= gV (注意單位)
7, 萬有引力: F=G
適用條件:兩質點間的引力(或可以看作質點,如兩個均勻球體).
G為萬有引力恆量,由卡文迪許用扭秤裝置首先測量出.
在天體上的應用:(M--天體質量 ,m—衛星質量, R--天體半徑 ,g--天體表面重力加速度,h—衛星到天體表面的高度)
a ,萬有引力=向心力
G
b,在地球表面附近,重力=萬有引力
mg = G g = G
第一宇宙速度
mg = m V=
8, 庫侖力:F=K (適用條件:真空中,兩點電荷之間的作用力)
電場力:F=Eq (F 與電場強度的方向可以相同,也可以相反)
10,磁場力:
洛侖茲力:磁場對運動電荷的作用力.
公式:f=qVB (BV) 方向--左手定則
安培力 : 磁場對電流的作用力.
公式:F= BIL (BI) 方向--左手定則
11,牛頓第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
適用范圍:宏觀,低速物體
理解:(1)矢量性 (2)瞬時性 (3)獨立性
(4) 同體性 (5)同系性 (6)同單位制
12,勻變速直線運動:
基本規律: Vt = V0 + a t S = vo t +a t2
幾個重要推論:
(1) Vt2 - V02 = 2as (勻加速直線運動:a為正值 勻減速直線運動:a為正值)
(2) A B段中間時刻的瞬時速度:
Vt/ 2 == (3) AB段位移中點的即時速度:
Vs/2 =
勻速:Vt/2 =Vs/2 ; 勻加速或勻減速直線運動:Vt/2 初速為零的勻加速直線運動,在1s ,2s,3s……ns內的位移之比為12:22:32……n2; 在第1s 內,第 2s內,第3s內……第ns內的位移之比為1:3:5…… (2n-1); 在第1米內,第2米內,第3米內……第n米內的時間之比為1:: ……(
初速無論是否為零,勻變速直線運動的質點,在連續相鄰的相等的時間間隔內的位移之差為一常數:s = aT2 (a--勻變速直線運動的加速度 T--每個時間間隔的時間)
豎直上拋運動: 上升過程是勻減速直線運動,下落過程是勻加速直線運動.全過程是初速度為VO,加速度為g的勻減速直線運動.
上升最大高度: H =
(2) 上升的時間: t=
(3) 上升,下落經過同一位置時的加速度相同,而速度等值反向
(4) 上升,下落經過同一段位移的時間相等. 從拋出到落回原位置的時間:t =
(5)適用全過程的公式: S = Vo t --g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S,Vt的正,負號的理解)
14,勻速圓周運動公式
線速度: V= R =2f R=
角速度:=
向心加速度:a =2 f2 R
向心力: F= ma = m2 R= mm4n2 R
注意:(1)勻速圓周運動的物體的向心力就是物體所受的合外力,總是指向圓心.
(2)衛星繞地球,行星繞太陽作勻速圓周運動的向心力由萬有引力提供.
氫原子核外電子繞原子核作勻速圓周運動的向心力由原子核對核外電子的庫侖力提供.
15,平拋運動公式:勻速直線運動和初速度為零的勻加速直線運動的合運動
水平分運動: 水平位移: x= vo t 水平分速度:vx = vo
豎直分運動: 豎直位移: y =g t2 豎直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo,Vy,V,X,y,t,七個物理量中,如果 已知其中任意兩個,可根據以上公式求出其它五個物理量.
16, 動量和沖量: 動量: P = mV 沖量:I = F t
(要注意矢量性)
17 ,動量定理: 物體所受合外力的沖量等於它的動量的變化.
公式: F合t = mv' - mv (解題時受力分析和正方向的規定是關鍵)
18,動量守恆定律:相互作用的物體系統,如果不受外力,或它們所受的外力之和為零,它們的總動量保持不變. (研究對象:相互作用的兩個物體或多個物體)
公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O
適用條件:
(1)系統不受外力作用. (2)系統受外力作用,但合外力為零.
(3)系統受外力作用,合外力也不為零,但合外力遠小於物體間的相互作用力.
(4)系統在某一個方向的合外力為零,在這個方向的動量守恆.
19, 功 : W = Fs cos (適用於恆力的功的計算)
理解正功,零功,負功
(2) 功是能量轉化的量度
重力的功------量度------重力勢能的變化
電場力的功-----量度------電勢能的變化
分子力的功-----量度------分子勢能的變化
合外力的功------量度-------動能的變化
20, 動能和勢能: 動能: Ek =
重力勢能:Ep = mgh (與零勢能面的選擇有關)
21,動能定理:外力所做的總功等於物體動能的變化(增量).
公式: W合= Ek = Ek2 - Ek1 = 22,機械能守恆定律:機械能 = 動能+重力勢能+彈性勢能
條件:系統只有內部的重力或彈力做功.
公式: mgh1 + 或者 Ep減 = Ek增
23,能量守恆(做功與能量轉化的關系):有相互摩擦力的系統,減少的機械能等於摩擦力所做的功.
E = Q = f S相
24,功率: P = (在t時間內力對物體做功的平均功率)
P = FV (F為牽引力,不是合外力;V為即時速度時,P為即時功率;V為平均速度時,P為平均功率; P一定時,F與V成正比)
25, 簡諧振動: 回復力: F = -KX 加速度:a = -
單擺周期公式: T= 2 (與擺球質量,振幅無關)
(了解)彈簧振子周期公式:T= 2 (與振子質量,彈簧勁度系數有關,與振幅無關)
26, 波長,波速,頻率的關系: V == f (適用於一切波)
二,熱學
1,熱力學第一定律:U = Q + W
符號法則:外界對物體做功,W為"+".物體對外做功,W為"-";
物體從外界吸熱,Q為"+";物體對外界放熱,Q為"-".
物體內能增量U是取"+";物體內能減少,U取"-".
2 ,熱力學第二定律:
表述一:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其他變化.
表述二:不可能從單一的熱源吸收熱量並把它全部用來對外做功,而不引起其他變化.
表述三:第二類永動機是不可能製成的.
3,理想氣體狀態方程:
(1)適用條件:一定質量的理想氣體,三個狀態參量同時發生變化.
(2) 公式: 恆量
4,熱力學溫度:T = t + 273 單位:開(K)
(絕對零度是低溫的極限,不可能達到)
三,電磁學
(一)直流電路
1,電流的定義: I = (微觀表示: I=nesv,n為單位體積內的電荷數)
2,電阻定律: R=ρ (電阻率ρ只與導體材料性質和溫度有關,與導體橫截面積和長度無關)
3,電阻串聯,並聯:
串聯:R=R1+R2+R3 +……+Rn
並聯: 兩個電阻並聯: R=
4,歐姆定律:(1)部分電路歐姆定律: U=IR
(2)閉合電路歐姆定律:I =
路端電壓: U = -I r= IR
電源輸出功率: = Iε-Ir =
電源熱功率:
電源效率: = =
(3)電功和電功率:
電功:W=IUt 電熱:Q= 電功率 :P=IU
對於純電阻電路: W=IUt= P=IU =
對於非純電阻電路: W=Iut P=IU
(4)電池組的串聯:每節電池電動勢為`內阻為,n節電池串聯時:
電動勢:ε=n 內阻:r=n
(二)電場
1,電場的力的性質:
電場強度:(定義式) E = (q 為試探電荷,場強的大小與q無關)
點電荷電場的場強: E = (注意場強的矢量性)
2,電場的能的性質:
電勢差: U = (或 W = U q )
UAB = φA - φB
電場力做功與電勢能變化的關系:U = - W
3,勻強電場中場強跟電勢差的關系: E = (d 為沿場強方向的距離)
4,帶電粒子在電場中的運動:
鈾? Uq =mv2
②偏轉:運動分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t
a =
(三)磁場
幾種典型的磁場:通電直導線,通電螺線管,環形電流,地磁場的磁場分布.
磁場對通電導線的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定則判定;若B‖I,則力的大小為零)
磁場對運動電荷的作用(洛侖茲力): F = qvB (要求v⊥B, 力的方向也是由左手定則判定,但四指必須指向正電荷的運動方向;若B‖v,則力的大小為零)
帶電粒子在磁場中運動:當帶電粒子垂直射入勻強磁場時,洛侖茲力提供向心力,帶電粒子做勻速圓周運動.即: qvB =
可得: r = , T = (確定圓心和半徑是關鍵)
(四)電磁感應
1,感應電流的方向判定:①導體切割磁感應線:右手定則;②磁通量發生變化:楞次定律.
2,感應電動勢的大小:① E = BLV (要求L垂直於B,V,否則要分解到垂直的方向上 ) ② E = (①式常用於計算瞬時值,②式常用於計算平均值)
(五)交變電流
1,交變電流的產生:線圈在磁場中勻速轉動,若線圈從中性面(線圈平面與磁場方向垂直)開始轉動,其感應電動勢瞬時值為:e = Em sinωt ,其中 感應電動勢最大值:Em = nBSω .
2 ,正弦式交流的有效值:E = ;U = ; I =
(有效值用於計算電流做功,導體產生的熱量等;而計算通過導體的電荷量要用交流的平均值)
3 ,電感和電容對交流的影響:
電感:通直流,阻交流;通低頻,阻高頻
電容:通交流,隔直流;通高頻,阻低頻
電阻:交,直流都能通過,且都有阻礙
4,變壓器原理(理想變壓器):
①電壓: ② 功率:P1 = P2
③ 電流:如果只有一個副線圈 : ;
若有多個副線圈:n1I1= n2I2 + n3I3
電磁振盪(LC迴路)的周期:T = 2π
四,光學
1,光的折射定律:n =
介質的折射率:n =
2,全反射的條件:①光由光密介質射入光疏介質;②入射角大於或等於臨界角. 臨界角C: sin C =
3,雙縫干涉的規律:
①路程差ΔS = (n=0,1,2,3--) 明條紋
(2n+1) (n=0,1,2,3--) 暗條紋
相鄰的兩條明條紋(或暗條紋)間的距離:ΔX =
4,光子的能量: E = hυ = h ( 其中h 為普朗克常量,等於6.63×10-34Js, υ為光的頻率) (光子的能量也可寫成: E = m c2 )
(愛因斯坦)光電效應方程: Ek = hυ - W (其中Ek為光電子的最大初動能,W為金屬的逸出功,與金屬的種類有關)
5,物質波的波長: = (其中h 為普朗克常量,p 為物體的動量)
五,原子和原子核
氫原子的能級結構.
原子在兩個能級間躍遷時發射(或吸收光子):
hυ = E m - E n
核能:核反應過程中放出的能量.
質能方程: E = m C2 核反應釋放核能:ΔE = Δm C2
復習建議:
1,高中物理的主幹知識為力學和電磁學,兩部分內容各占高考的38℅,這些內容主要出現在計算題和實驗題中.
力學的重點是:①力與物體運動的關系;②萬有引力定律在天文學上的應用;③動量守恆和能量守恆定律的應用;④振動和波等等.⑤⑥
解決力學問題首要任務是明確研究的對象和過程,分析物理情景,建立正確的模型.解題常有三種途徑:①如果是勻變速過程,通常可以利用運動學公式和牛頓定律來求解;②如果涉及力與時間問題,通常可以用動量的觀點來求解,代表規律是動量定理和動量守恆定律;③如果涉及力與位移問題,通常可以用能量的觀點來求解,代表規律是動能定理和機械能守恆定律(或能量守恆定律).後兩種方法由於只要考慮初,末狀態,尤其適用過程復雜的變加速運動,但要注意兩大守恆定律都是有條件的.
電磁學的重點是:①電場的性質;②電路的分析,設計與計算;③帶電粒子在電場,磁場中的運動;④電磁感應現象中的力的問題,能量問題等等.
2,熱學,光學,原子和原子核,這三部分內容在高考中各占約8℅,由於高考要求知識覆蓋面廣,而這些內容的分數相對較少,所以多以選擇,實驗的形式出現.但絕對不能認為這部分內容分數少而不重視,正因為內容少,規律少,這部分的得分率應該是很高的.
祝你成功,(給我追分算了..)
⑹ 關於圓周運動的所有公式有哪些
線速度度V=s/t=2πR/T
角速度ω=Φ/t=2π/T=2πf
向心加速度a=V2/R=ω2R=(2π/T)2R
向心力F心=mV2/R=mω2R=m(2π/T)2R
周期與頻率T=1/f
角速度與線速度的關系V=ωR
角速度與轉速的關系ω=2πn
(6)圓周運動相關知識點模型大全擴展閱讀:
勻速圓周運動向心力公式的推導
設一質點在A處的運動速度為Va,在運動很短時間⊿t後,到達B點,設此是的速度為Vb
由於受向心力的作用而獲得了一個指向圓心
速度⊿v,在⊿v與Va的共同作用下而運動到B點,達到Vb的速度
則矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va
用幾何的方法可以得到Va與Vb的夾 角等於OA與OB的夾角,當⊿t非常小時
⊿v/v=s/r(說明:由於質點做勻速圓周運動,所以Va=Vb=v,s表示弧長,r表示半徑)
所以⊿v=sv/r
⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示線速度
所以a=v²/r=rω²=r4π²/T²=r4π²n²
F(向心力)=ma=mv²/r=mrω²=m4π²/T²r
將平面里的 二 維 勻速圓周運動一維化
建立一個模型:質量為m的小球與一勁度系 數為k的彈簧(原長無限短)相連,在平 面 直 角 坐 標 系x-y里做角速度為ω,半徑為A的勻速圓 周 動。
此時F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m
在x軸上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ)
同理,y軸上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ)
將此推廣可知小球在過原點的任何一條直線上的投影均做簡諧運動。
⑺ 物理有關圓周運動都有什麼知識點,和公式及解題方法
1、掌握勻速圓周運動的向心力公式及與圓周運動有關的幾個公式
2、能用上述公式解決有關圓周運動的實例
教學難點:
理解做勻速圓周運動的物體受到的向心力是由某幾個力的合力提供的,而不是一種特殊的力。
教學方法:
講授法、分析歸納法、推理法
教學用具:
投影儀、投影片、錄像機、錄像帶
教學步驟:
一、引入新課
1、復習提問:
(1)向心力的求解公式有哪幾個?
(2)如何求解向心加速度?
2、引入:本節課我們應用上述公式來對幾個實際問題進行分析。
二、新課教學
(一)用投影片出示本節課的學習目標:
1、知道向心力是物體沿半徑方向所受的合外力提供的。
2、知道向心力、向心加速度的公式也適用於變速圓周運動。
3、會在具體問題中分析向心力的來源,並進行有關計算。
(二)學習目標完成過程:
1:關於向心力的來源。
(1)介紹:分析和解決勻速圓周運動的問題,首先是要把向心力的來源搞清楚。
2:說明:
a:向心力是按效果命名的力;
b:任何一個力或幾個力的合力只要它的作用效果是使物體產生向心加速度,它就是物體所受的向心力;
c:不能認為做勻速圓周運動的物體除了受到另外物體的作用外,還要另外受到向心力。
3.簡介運用向心力公式的解題步驟:
(1)明確研究對象,確定它在哪個平面內做圓周運動,找到圓心和半徑。
(2)確定研究對象在某個位置所處的狀態,進行具體的受力分析,分析哪些力提供了向心力。
(3)建立以向心方向為正方向的坐標,據向心力共式列方程。
(4)解方程,對結果進行必要的討論。
4、實例1:火車轉彎
(1)介紹:火車在平直軌道上勻速行駛時,所受的合力等於0,那麼當火車轉彎時,我們說它做圓周運動,那麼是什麼力提供火車的向心力呢?
(2)放錄像、火車轉彎的情景
(3)用CAI課件分析內外軌等高時向心力的來源。
a:此時火車車輪受三個力:重力、支持力、外軌對輪緣的彈力。
b:外軌對輪緣的彈力提供向心力。
c:由於該彈力是由輪緣和外軌的擠壓產生的,且由於火車質量很大,故輪緣和外軌間的相互作用力很大,易損害鐵軌。
(4)介紹實際的彎道處的情況。
a:用錄像資料展示實際的轉彎處 外軌略高於內軌。
b:用CAI課件展示此時火車的受力情況,並說明此時火車的支持力FN的方向不再是豎直的,而是斜向彎道的內側。
c:進一步用CAI課件展示此時火車的受力示意圖,並分析得到:此時支持里與重力的合力提供火車轉彎所需的向心力。
d:強調說明:轉彎處要選擇內外軌適當的高度差,使轉彎時所需的向心力完全由重力G和支持里FN來提供 這樣外軌就不受輪緣的擠壓了。
5、實例2:汽車過拱橋的問題
(1)放錄像 展示汽車過拱橋的物理情景
(2)用CAI課件模擬:並出示文字說明,汽車在拱橋上以速度v前進,橋面的圓弧半徑為R,求汽車過橋的最高點時對橋面的壓力?
(3)a:選汽車為研究對象
b:對汽車進行受力分析:受到重力和橋對車的支持力
c:上述兩個力的合力提供向心力、且向心力方向向下
d:建立關系式:
e:又因支持力與壓力是一對作用力與反作用力,所以 且
(4)說明:上述過程中汽車做的不是勻速圓周運動,我們仍使用了勻速圓周運動的公式,原因是向心力和向心加速度的公式對於變速圓周運動同樣適用。
⑻ 高一物理(圓周運動)
概述
在物理學中,圓周運動(circular motion)是在圓圈上轉圈:一個圓形路徑或軌跡。當考慮一件物體的圓周運動時,物體的體積大小會被忽略,並看成一質點(在空氣動力學上除外)。 圓周運動的例子有:一個人造衛星跟隨其軌跡轉動、用繩子連接著一塊石頭並打圈揮動、一架賽車在賽道上轉彎、一粒電子垂直地進入一個平均磁場、一個齒輪在機器中的轉動、皮帶傳動裝置、火車的車輪及拐彎處軌道。 圓周運動以向心力(centripetal force)提供運動物體所須的加速度。這向心力把運動物體拉向圓形軌跡的中心點。若果沒有向心力,物體會跟隨牛頓第一定律慣性地進行直線運動。即使物體速率不變,圓周運動是變加速運動,物體的速度方向在不停地改變。[1]
編輯本段生活中的圓周運動
火車過彎:實際做圓周運動,具有向心加速度。 汽車過拱形橋:也可看作圓周運動,橋對車的支持力為F=G-(m*v^2)/R,又因為汽車對橋的壓力和橋對汽車的支持力是一對作用力和反作用力,大小相等,所以壓力大小也為 F=G-(m*v^2)/R。 汽車過凹形橋:也可看作圓周運動,橋對車的支持力為F=G+(m*v^2)/R,又因為汽車對橋的壓力和橋對汽車的支持力是一對作用力和反作用力,大小相等,所以壓力大小也為 F=G+(m*v^2)/R。
編輯本段特點
勻速圓周運動的特點:軌跡是圓,角速度,周期 ,線速度的大小(注:"線速度"是改變的,因為線速度是矢量,方向時時在變化)和向心加速度的大小不變。 線速度定義:質點沿圓周運動通過的弧長ΔL與所用的時間Δt的比值叫做線速度。 線速度的物理意義:描述質點沿圓周運動的快慢,是矢量。 角速度的定義:半徑轉過的弧度(弧度制:360°=2π)與所用時間t的比值. 周期的定義:作勻速圓周運動的物體,轉過一周所用的時間. 轉速的定義:作勻速圓周運動的物體,每秒轉過的弧度. 注意:圓周運動不是勻速運動,而是變速曲線運動!
編輯本段主要公式
線速度v=S/t ,角速度ω=角度/t , 由以上可推導出線速度v=ωr, 求線速度,除了可以用v=S/t,也可推導出v=2πr/T(註:T為周期)=ωr=2πrn(註:n代表轉速,n與可以T可以互相轉換,公式為T=1/n),π代表圓周率 同樣的,求角速度可以用ω=角度/t =2π/T=v/r=2πn 其中S為弧長,r指半徑,V為線速度,a為加速度,T為周期,ω為角速度(單位:rad/s)。
編輯本段著名理論
任何物體在作圓周運動時需要一個向心力,因為它在不斷改變速度。對象的速度的速率大小不變,但方向一直在改變。只有合適大小的向心力才能維持物體在圓軌道上運動。這個加速度(速度是一個矢量,改變方向的同時可以不改變大小)是由向心力提供的,如果不具備這一條件,物體將脫離圓軌道。注意,向心加速度是反映線速度方向改變的快慢。 物體在作圓周運動時速度的方向相切於圓周路徑。勻速圓周運動物體所受合力的方向一直指向圓心,即此來改變速度的方向。 現在,向心力可以使物體不脫離軌道。一個很好的例子是重力。 地面重力給人造衛星必要的力使其在沿軌道運動。 現在回到物理學上來。向心力與物體速度的平方及它的質量和半徑倒數成正比: F = mv²/r,F=mω²r(v是線速度,ω是角速度) 所以如果我們知道了力大小,質量,半徑,我們可以算出對象旋轉速度。 如果我們知道了速度,質量,半徑,我們可以算出力大小。符號記為如下: F = ma 是的,合外力=質量乘以加速度,所以: a = v²/r =(2π)²r/T² 質量符號去除—用 F和 ma 取代. 因此求加速度可以不用知道物體的質量。 當一質點在一平面做圓周運動時在另一正交平面的射影是做簡諧運動,與彈簧振子的運動形式一樣,加速度在不斷變化中。 如果物體沿半徑是R的圓周作勻速圓周運動,運動一周的時間為T,則線速度的大小等於角速度大小和半徑R的乘積. v=ωR,使用這一公式時應注意,角度的單位一定要用弧度,只有角速度的單位是弧度/秒時,上述公式才成立.
編輯本段勻速圓周運動
物理術語
1定義:質點沿圓周運動,如果在任意相等的時間里通過的圓弧長度都相等,這種運動就叫做「勻速圓周運動」,亦稱「勻速率圓周運動」因為物體作圓周運動時速率不變,但速度方向隨時發生變化。 2物體作圓周運動的條件:①具有初速度;②受到一個大小不變、方向與物體運動速度方向始終垂直因而是指向圓心的力(向心力)。物體作勻速圓周運動時,速度的大小雖然不變,但速度的方向時刻改變,所以勻速圓周運動是變速運動。又由於作勻速圓周運動時,它的向心加速度的大小不變,但方向時刻改變,故勻速圓周運動是變加速運動。「勻速圓周運動」一詞中的「勻速」僅是速率不變的意思。 做勻速圓周運動的物體仍然具有加速度,而且加速度不斷改變,因為其加速度方向在不斷改變,因為其運動軌跡是圓,所以勻速圓周運動是變加速曲線運動。勻速圓周運動加速度方向始終指向圓心。做變速圓周運動的物體總能分解出一個指向圓心的加速度,我們將方向時刻指向圓心的加速度稱為向心加速度
勻速圓周運動相關公式
1、v(線速度)=l/t=2πr/T(l代表弧長,t代表時間,r代表半徑) 2、ω(角速度)=θ/t=2π/T(θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、f(頻率)=1/T 5、ω=2πn 6、v=rω 7、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 8、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 9、繩子拉球時,過頂點時的最小速度為v=(gr)^(1/2) 桿拉球時,v過頂點的最小速度為0 勻速圓周運動向心力公式的推導 設一質點在A處的運動速度為Va,在運動很短時間⊿t後,到達B點,設此是的速度為Vb 由於受向心力的作用而獲得了一個指向圓心 速度⊿v,在⊿v與Va的共同作用下而運動到B點,達到Vb的速度 則矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va 用幾何的方法可以得到Va與Vb的夾角等於OA與OB的夾角,當⊿t非常小時 ⊿v/v=s/r(說明:由於質點做勻速圓周運動,所以Va=Vb=v,s表示弧長,r表示半徑) 所以⊿v=sv/r ⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示線速度 所以a=v^2/r=rω^2=r4π^2/T^2=r4π^2n^2 F(向心力)=ma=mv^2/r=mrω^2=m4π^2/T^2r 將平面里的二維勻速圓周運動一維化 建立一個模型:質量為m的小球與一勁度系數為k的彈簧(原長無限短)相連,在平面直角坐標系x-y里做角速度為ω,半徑為A的勻速圓周運動。 此時F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m 在x軸上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ) 同理,y軸上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ) 將此推廣可知小球在過原點的任何一條直線上的投影均做簡諧運動。 勻速圓周運動與簡諧運動的關系
編輯本段變速圓周運動
一般地,將作圓周運動的物體所受的合力分解為徑向分力(使物體保持圓軌道運動)和切向分力(使物體速度發生變化)。 向心力的大小由運動物體的瞬時速度決定。 繩子末端的物體在這種情況下,受到的力量可以分為徑向分力和切線分力。徑向分力可以指向中心也可以向外。
⑼ 高中物理圓周運動知識點
1. 勻速圓周運動:質點沿圓周運動,如果在___________________________________,這種運動就叫做勻速周圓運動。
2.描述勻速圓周運動的物理量
①線速度 ,物體在一段時間內通過的__________________的比值,叫做物體的線速度,即V=S/t。線速度是____量,其方向就在圓周該點的___________。線速度方向是時刻在______,所以勻速圓周運動是_______運動。
②角速度 ,連接運動物體和圓心的半徑在一段時間內轉過的___________________的比值叫做勻速圓周運動的角速度。即 =θ/t。對某一確定的勻速圓周運動來說,角速度是__________的,角速度的單位是rad/s。
③周期T和頻率 ,關系:________
3.描述勻速圓周運動的各物理量間的關系:________________________
4、向心力:是按作用效果命名的力,其動力學效果在於產生___________,即只改變線速度______,不會改變線速度的。對於勻速圓周運動物體其向心力應由其所受_____________________________提供。.
5. 向心力與向心加速度、線速度、角速度、周期、頻率的關系是____________________________
6. 變速圓周運動: 合力不與速度方向_______,v、a、F的大小和方向均________
7. 離心運動:合力突然消失或不足以提供圓周運動所需________時,物體逐漸遠離______的運動