當前位置:首頁 » 基礎知識 » 有關中考的數學知識點
擴展閱讀
新手學電腦基礎有哪些 2024-11-07 16:20:37

有關中考的數學知識點

發布時間: 2022-08-20 17:42:28

㈠ 數學中考必背知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

考點5:三角形的重心

考核要求:知道重心的定義並初步應用。

考點6:向量的有關概念

考點7:向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

二、銳角三角比(2個考點)

考點8:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點9:解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點11:用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點12:畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點13:二次函數的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

四、圓的相關概念(6個考點)

考點14:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點15:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點16:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點17:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點18:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

考點19:畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

五、數據整理和概率統計(9個考點)

考點20:確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點21:事件發生的可能性大小,事件的概率

考核要求:

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

注意:

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點22:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點23:數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點24:統計的含義

考核要求:

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點25:平均數、加權平均數的概念和計算

考核要求:

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點26:中位數、眾數、方差、標准差的概念和計算

考核要求:

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

注意:

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

考核要求:

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點28:中位數、眾數、方差、標准差、頻數、頻率的應用

考核要求:

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。

㈡ 初中數學知識點有哪些

初中數學知識點有:

1、平行線的兩條判定定理

(1)兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。簡稱:內錯角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。簡稱:同旁內角互補,兩直線平行。

2、利用絕對值比較大小

(1)兩個正數比較:絕對值大的那個數大;

(2)兩個負數比較:先算出它們的絕對值,絕對值大的反而小。

3、圓的基本性質

(1)半圓或直徑所對的圓周角是直角。

(2)任意一個三角形一定有一個外接圓。

(3)在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

4、全等三角形的判定

(1)邊邊邊公理:三邊對應相等的兩個三角形全等(「邊邊邊」或「SSS」)。

(2)邊角公理:兩邊和它們的夾角對應相等的兩個三角形全等(「邊角邊」或「SAS」)。

(3)角邊角公理:兩個角和它們的夾邊分別對應相等的兩個三角形全等(「角邊角」或「ASA」)。

5、一次函數

形如y=kx+b(k、b是常數,且k≠0)的函數,叫做一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)。所以,正比例函數是特殊的一次函數。

㈢ 初三數學基礎知識點有哪些

初三數學基礎知識點:

一、方程(組)與不等式(組)

1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。

3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。

二、有理數

1、有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2、有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

三、二次函數解析式的表示方法

1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;

2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;

3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。

㈣ 初中數學知識有哪些

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

㈤ 中考數學重點知識歸納內容是什麼

一、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

二、一些基本公式

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三、二元一次方程組

1、二元一次方程

含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。

2、二元一次方程的解

使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。

3、二元一次方程組

兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)

4、二元一次方程組的解

使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。

5、二元一次方程組的解法

四、基本思想:"消元"

解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.

6、三元一次方程

把含有三個未知數,並且含有未知數的項的次數都是1的整式方程。

五、列方程(組)解應用題

注意:千萬不要死記硬背例題的類型及其解法,要具體問題具體分析,一般來講,應按下面的步驟進行:

1、審題:弄清題意和題目中的已知量、未知量,並能找出能夠表示應用問題的全部含義的等量關系。

2、設未知數:選擇一個或幾個適當的未知量,用字母表示,並根據題目的數量關系,用含未知數的代數式表示相關的未知量。

3、列方程(組):根據等量關系列出方程(組)。

4、解方程(組):其過程可以省略,但要注意技巧和方法。

5、檢驗:首先檢查所列方程(組)是否正確,然後檢驗所得方程的解是否符合題意。

6、寫答:不要忘記單位名稱。

7、分式方程的解法

①一般解法:去分母法,即方程兩邊同乘以最簡公分母。

②特殊解法:換元法。

(2)驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。

說明:解分式方程,一般先考慮換元法,再考慮去分母法。

六、相交線中的角

兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。

臨補角互補,對頂角相等。

直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。

七、線段的性質

1、線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。

2、連接兩點的線段的長度,叫做這兩點的距離。

3、線段的中點到兩端點的距離相等。

4、線段的大小關系和它們的長度的大小關系是一致的。

5、線段垂直平分線的性質定理及逆定理

垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

㈥ 初中數學中考重點是什麼

《2019傑哥解密中考數學初二春暑沖刺套餐完結》網路網盤免費在線下載

鏈接:

提取碼:CSBH

二次函數的分佔百分之四十五,其他都是初一到初三的基礎,就二次函數拔關,多注意復習!


㈦ 數學中考必考知識點有哪些

數學中考必考知識點有如下:

1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。

2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。

3、若一個三角形30°內角所對的邊是某一邊的一半,那麼這個三角形是以這條長邊為斜邊的直角三角形。

4、圓錐底面半徑 r=n°/360°L(L為母線長)(r為底面半徑)。

5、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線,AB與⊙O相交,d<r。

㈧ 中考數學主要是考什麼內容

初一上冊
有理數、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬於簡單。
【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、總結、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
初一下冊
相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和資料庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。
【考察內容】
①平行線的性質(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①考察平面直角坐標系內點的坐標特徵
②函數自變數的取值范圍和球函數的值
③考察結合圖像對簡單實際問題中的函數關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內容】
①方程組的解法,解方程組
②根據題意列二元一次方程組解經濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內容:】
① 一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。
② 列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。
③留意不等式(組)和函數圖像的結合問題。
(5)資料庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。
【考察內容】
①常見統計圖和平均數,眾數,中位數的計算分析。
②方差,極差的應用分析
③與現實生活有關的實際問題的考察熱點。題目注重考查統計學的知識分析和數據處理。
初二上冊
三角形、全等三角形、軸對稱、整式的乘除與因式分解、分式。
(1)三角形:是初中數學的基礎,中考命題中的重點。中考試題分值約為18-24分,以填空,選擇,解答題,也會出現一些證明題目。
【考查內容】
①三角形的性質和概念,三角形內角和定理,三邊關系,以及三角形全等的性質與判定。
②三角形全等融入平行四邊形的證明
③三角形運動,折疊,旋轉,拼接形成的新數學問題
④等腰三角形的性質與判定,面積,周長等
⑤直角三角形的性質,勾股定理是重點
⑥三角形與圓的相關位置關系
⑦三角形中位線的性質應用
(2)全等三角形
(3)軸對稱:圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
【考察內容】
①軸對稱和軸對稱圖形的性質判別。
②注意鏡面對稱與實際問題的解決。
(4)整式的乘除與因式分解:中考試題中分值約為4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公司的幾何意義
③利用提公因式法和公式法分解因式。
(5)分式:中考試題中分值約為6-8分,主要以填空,簡答計算題型出現,難易度屬於中。
【考察內容】
①分式的概念,性質,意義
②分式的運算,化簡求值。
③列分式方程解決實際問題。
初二下冊
二次根式、勾股定理、四邊形、一次函數和數據的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知識是近幾年各地中考命題的熱點之一,考察題型為選擇題,填空題,應用題為主,分值一般8-12分,難易度為難。
【考察內容】
①常見銳角的三角函數值的計算
②根據圖形計算距離,高度,角度的應用題
③根據題中給出的信息構建圖形,建立數學模型,然後用解直角三角形的知識解決問題。
(3)四邊形:初中數學中考中的重點內容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。
【考察內容】
①多邊形的內角和,外角和等問題
②圖形的鑲嵌問題
③平行四邊形,矩形,菱形,正方形,等腰梯形的性質和判定。
(4)一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
【考察內容】
①會畫一次函數的圖像,並掌握其性質。
②會根據已知條件,利用待定系數法確定一次函數的解析式。
③能用一次函數解決實際問題。
④考察一次函數與二元一次方程組,一元一次不等式的關系。
(5)數據的分析
初三上冊
二次函數、一元二次方程、旋轉、圓和概率初步。
(1)二次函數:二次函數的圖像和性質是中考數學命題的熱點,難點。試題難度一般為難。常見選擇,填空題分值為3-5分,綜合題分值為10-12分。
【考察內容】
①能通過對實際問題情境的分析確定二次函數的表達式,並體會二次函數的意義。
②能用數形結合,歸納等熟悉思想,根據二次函數的表達式(圖像)確定二次的開口方向,對稱軸和頂點的坐標,並獲得更多信息。
③綜合運用方程,幾何圖形,函數等知識點解決問題。
(2)一元二次方程:中考分值約為3-5分,題型主要以選擇,填空為主,極少出現簡答,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。
(3)旋轉:圖形的平移,旋轉是中考題的新題型,熱點題型,在試題比重,逐年上升。分值一般為5-8分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
【考察內容】
①中心對稱和中心對稱圖形的性質
②旋轉和平移的性質。
(4)圓:圓和圓的有關性質與圓的有關計算是近幾年各地中考命題的重點內容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結論開放探索題作為新的題型,分值一般是6-12分,難易度為中。
【考察內容】
①圓的有關性質的應用。垂徑定理是重點。
② 直線和圓,圓和圓的位置關系的判定及應用。
③弧長,扇形面積,圓柱,圓錐的側面積和全面積的計算
④圓與相似三角形,三角函數的綜合運用以及有關的開放題,探索題。
(5)概率初步:分值一般3-6分,題型以選擇,填空常見,更多以解答題目為主,難易度為中。
【考察內容】
①簡答事件的概率求解,圖表法和數形圖法
②利用概率解決實際,公平性問題等
③注意概率知識與方程相結合的綜合性試題,選材貼近生活,越來越新。
初三下冊
反比例函數、相似、銳角三角函數和投影與視圖。
(1)反比例函數:反比例函數的圖像和性質是中考數學命題的重要內容,試題新穎,題型靈活多樣,所佔分值約為3-8分,難易度屬於難。
【考察內容】
①會畫反比例函數的圖像,掌握基本性質。
②能根據條件確定反比例函數的表達式。
③能用反比例函數解決實際問題。
(2)相似:圖形的形似是平面幾何中極為重要的內容,是中考數學中的重點考察內容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬於難。
【考察內容】
①相似三角形的性質和判別方法,是重點。
②相似多邊形的認識,黃金分割的應用。
③相似形與三角形,平行四邊形的綜合性題目是難點。
(3)銳角三角函數
(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現。
【考察內容】
①常見幾何體的三視圖
②常見幾何體的展開和折疊,展開和折疊是考試的熱點,值得注意。
③利用相似結合平行投影和中心投影解決實際問題。
(不同地區分值不同,可供參考)
選擇題:3分一個,共14個,總分42分。
填空題:3分一個,共5個,總分15分。
解答題:共7題,總分63分。
(一)線段、角的計算與證明問題
中考中的簡答題一般是分為兩到三部分的。第一部分基本上都是簡單題和中檔題,目的在於考查基礎。第二部分第二部分往往就是開始拉分的中難題了。
(二)列方程(組)解決應用問題
在中考中,方程是初中數學當中最重要的部分,所以也是中考必考內容。從近年來中考來看,結合時事熱點考的比較多,所以還需要考生有一些實際生活經驗。
(三)閱讀理解問題
閱讀理解問題是中考中的一個亮點。閱讀理解往往是先給一個材料或介紹一個超綱的知識或給出一個針對某一種題目的解法,然後再給出條件出題。
(四)多種函數交叉綜合問題
初中接觸的函數主要有一次函數、二次函數和反比例函數。這類題目本身並不會太難,很少作為壓軸題目出現,一般都是作為一道中檔次題目出現來考查學生對函數的掌握。
(五)動態幾何
從歷年的中考來看,動態幾何往往作為壓軸的題目出現,得分率也是最低的。動態幾何一般分為兩類,一類是代數綜合方面,在坐標系中,動直線一般是用多種函數交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設立動點,考查學生的綜合分析能力。
(六)圖形位置關系
中學數學當中,圖形位置關系主要包括點、線、三角形、矩形和正方形及它們之間的關系。在中考中會包括在函數、坐標系及幾何題中,其中最重要的是三角形的各種問題。

㈨ 初中數學有哪些中考知識點和判定。求助,謝謝你們了

中考復習資料網路網盤資源
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234提取碼:1234
介紹:資源含有各大初中網路課程機構視頻教學資料、各類型初中中考沖刺、課件、教程等各類資料合集。

㈩ 初中數學知識點有哪些呢

初中數學知識點如下:

1、第1章《有理數》主要知識點有:有理數概念、相反數、絕對值、有理數加減乘除運算、科學計數法。

2、第2章《整式的加減》主要知識點:單項式、多項式、整式、同類項、去括弧法則、整式的加減運算。

3、第3章《一元一次方程》主要知識點:方程及一元一次方程概念、等式的性質、解一元一次方程、應用一元一次方程解決實際問題。

4、第4章《幾何圖形初步》主要知識點:直線、射線、線段,角的有關概念、角的單位及角度制,餘角、補角等。

5、第5章《相交線與平行線》主要知識點:鄰補角、對頂角,垂線及其性質,同位角、內錯角、同旁內角,平行線的判定與性質,命題、定理、證明。

6、第6章《實數》主要知識點:算數平方根、平方根、立方根,無理數、實數概念,實數的性質及運算。

7、第7章《平面直角坐標系》主要知識點:有序數對,點的坐標,用坐標表示平移。

8、第8章《二元一次方程組》主要知識點:二元一次方程及解的定義,二元一次方程組的定義及其解,代入消元和加減消元解二元一次方程組,實際問題與二元一次方程組。