當前位置:首頁 » 基礎知識 » 小學數學六年級會學到哪些知識點
擴展閱讀
電力鐵塔基礎怎麼定方向 2025-01-04 09:02:06

小學數學六年級會學到哪些知識點

發布時間: 2022-08-20 05:56:28

A. 六年級上冊數學重點知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

B. 六年級數學下冊重要知識點有哪些

六年級數學下冊重要知識點有:

1、數的認識:在復習數的認識相關知識的時候,一定要幫助孩子構建一個完成的知識體系,在構建完成之後還需要幫助孩子理解運用。

2、整數和分數的意義和分類。我們需要了解並記住整數和分數的定義是什麼,他們表示的意義是什麼,分數整數又有哪些分類,比如整數有奇數偶數合數質數等等,還有自然數、負數等等。再比如分數有真分數、假分數、帶分數等等,還有負分數等等。

3、數位和計數單位。這一塊的內容考查的不算太多,但是需要掌握數位之間的進率和計數單位的分類。在考試中有時候會涉及到利用數位來解決問題。

4、數的讀寫和改寫。數包括整數分數小數和負數等等,我們必須掌握所有數的讀法和寫法,讀的時候需要注意什麼,寫的時候需要注意什麼。在進行改寫的時候,需要注意哪些方面,一定要看清楚後邊的單位再利用四捨五入進行改寫。

5、分數和小數的基本性質。分數的性質和小數的性質這是經常考查的內容,學生們首先需要知道這兩個性質分別是什麼,注意的是什麼。小數點後末尾的0可以去掉,為何前邊的不能去掉呢?同乘或者除以相同的數,分數大小不變,那麼同加或者同減會怎麼樣呢。另外還需要注意小數點的移動導致數的變化規律。

6、因數與倍數。因數與倍數是五年級下冊的內容,內容雖然不算很多,但是非常難理解,所以這一塊內容一定要多下功夫,畢竟這塊內容還是初中學習的基礎。利用最大公因數和最小公倍數做題,也是有一定難度和技巧的。

C. 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

D. 小學六年級的數學學習內容有什麼(人教版)

上冊:位置、分數乘法、分數除法、圓、百分數、統計、數學廣角。

下冊:負數、圓柱與圓錐、比例、統計、數學廣角。

學生在一年級下冊已經學會了在具體的情境中,根據行、列確定物體的位置,並通過四年級下冊位置與方向的學習進一步認識了在平面內可以通過兩個條件確定物體的位置。本單元在此基礎上,讓學生學習在具體情境中用數對表示物體的位置或在方格紙上用數對確定位置,進一步提升學生的已有經驗,培養學生的空間觀念,為第三學段學習「圖形與坐標」的內容打下基礎。

結構

許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。

E. 六年級數學上冊必考知識點是什麼

【常用的數量關系】

1、每份數×份數=總數; 總數÷每份數=份數 ; 總數÷份數=每份數。

2、1倍數×倍數=幾倍數; 幾倍數÷1倍數=倍數; 幾倍數÷倍數=1倍數。

3、速度×時間=路程 ; 路程÷速度=時間 ; 路程÷時間=速度。

4、單價×數量=總價; 總價÷單價=數量 ; 總價÷數量=單價。

5、工作效率×工作時間=工作總量; 工作總量÷工作效率=工作時間。

工作總量÷工作時間=工作效率。

6、加數+加數=和; 和-一個加數=另一個加數。

7、被減數-減數=差; 被減數-差=減數; 差+減數=被減數。

8、因數×因數=積; 積÷一個因數=另一個因數。

9、被除數÷除數=商 ; 被除數÷商=除數; 商×除數=被除數。

【小學數學圖形計算公式】

1、正方形(C:周長, S:面積, a:邊長)。

周長=邊長×4; C=4a。

面積=邊長×邊長; S=a×a。

2、正方體(V:體積, a:棱長)。

表面積=棱長×棱長×6; S表=a×a×6。

體積=棱長×棱長×棱長; V= a×a×a。

3、長方形(C:周長, S:面積, a:邊長, b:寬 )。

周長=(長+寬)×2; C=2(a+b)。

面積=長×寬 ; S=a×b。

4、長方體(V:體積, S:面積, a:長, b:寬, h:高)。

(1)表面積=(長×寬+長×高+寬×高)×2; S=2(ab+ah+bh)。

(2)體積=長×寬×高; V=abh。

5、三角形(S:面積, a:底, h:高)。

面積=底×高÷2 ; S=ah÷2。

三角形的高=面積×2÷底 三角形的底=面積×2÷高。

6、平行四邊形(S:面積, a:底, h:高)。

面積=底×高; S=ah。

7、梯形(S:面積, a:上底, b:下底, h:高)。

面積=(上底+下底)×高÷2; S=(a+b)×h÷2。

8、圓形(S:面積, C:周長,π:圓周率, d:直徑, r:半徑 )。

(1)周長=π×直徑π=2×π×半徑; C=πd=2πr。

(2)面積=π×半徑×半徑; S= πr2。

9、圓柱體(V:體積, S:底面積, C:底面周長, h:高, r:底面半徑 )。

(1)側面積=底面周長×高=Ch=πdh=2πrh。

(2)表面積=側面積+底面積×2。

(3)體積=底面積×高。

10、圓錐體(V:體積, S:底面積, h:高, r:底面半徑 )。

體積=底面積×高÷3。

11、總數÷總份數=平均數。

12、和差問題的公式:已知兩數的和及它們的差,求這兩個數各是多少的應用題,叫做和差應用題,簡稱和差問題。

(和+差)÷2=大數; (和-差)÷2=小數。

F. 六年級下冊數學知識點總結

六年級下冊數學知識點總結

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。下面我整理了一些關於六年級下冊數學知識點總結,歡迎大家參考!

第一單元分數乘法

一、分數乘法

(一)分數乘法的意義:

1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。

例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?

2、一個數乘分數的意義是求一個數的幾分之幾是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分數乘法的計演算法則:

1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)

2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,常考的質因數有11×11=121;13×13=169;17×17=289;19×19=361)

4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。

(三)、 乘法中比較大小的規律

一個數(0除外)乘大於1的數,積大於這個數。

一個數(0除外)乘小於1的數(0除外),積小於這個數。

一個數(0除外)乘1,積等於這個數。

(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律: a × b = b × a

乘法結合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c

二、分數乘法的解決問題(已知單位“1”的量(用乘法),即求單位“1”的幾分之幾是多少)

1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。

2、找單位“1”: 單位“1” 在分率句中分率的前面;

或在“占”、“是”、“比”“相當於”的後面。

3、寫數量關系式的技巧:

(1)“的” 相當於 “×” ,“占”、“相當於”“是”、“比”是 “ = ”

(2)分率前是“的”字:用單位“1”的量×分率=具體量

例如:甲數是20,甲數的1/3是多少?列式是:20×1/3

4、看分率前有沒有多或少的問題;分率前是“多或少”的關系式:

(比少):單位“1”的量×(1-分率)=具體量;

例如:甲數是50,乙數比甲數少1/2,乙數是多少?

列式是:50×(1-1/2)

(比多):單位“1”的量×(1+分率)=具體量

例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?

列式是:50×(1+3/5)

3、求一個數的幾倍是多少:用 一個數×幾倍;

4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。

5、求幾個幾分之幾是多少:用幾分之幾×個數

6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法:

(1)、單位“1”的量×(1-分率)=另一個部分量(建議用)

(2)、單位“1”的量-已知占單位“1”的幾分之幾的部分量=要求的部分量

例如:教材15頁做一做和16頁練習第七題(題目中有時候會有這種題的'關鍵字“其中”)

第二單元位置與方向(二)

一、確定物體位置的方法:1、先找觀測點;2、再定方向(看方向夾角的度數);3、最後確定距離(看比例尺)

二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

三、位置關系的相對性:1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

四、相對位置:東--西;南--北;南偏東--北偏西。

第三單元分數除法

三、倒數

1、倒數的意義: 乘積是1的兩個數互為倒數。

強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。(要說清誰是誰的倒數)。

2、求倒數的方法:

(1)、求分數的倒數:交換分子分母的位置。

(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。

(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。

(4)、求小數的倒數: 把小數化為分數,再求倒數。

3、 1的倒數是1; 因為1×1=1;0沒有倒數,因為0乘任何數都得0,(分母不能為0)

4、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。

5、運用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等於1,也就是求2/3的倒數和求1/4的倒數。

1、分數除法的意義:

乘法: 因數 × 因數 = 積

除法: 積 ÷ 一個因數 = 另一個因數

分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

例如:1/2÷3/5意義是:已知兩個因數的積是1/2與其中一個因數3/5,求另一個因數的運算。

2、分數除法的計演算法則:

除以一個不為0的數,等於乘這個數的倒數。

3、分數除法比較大小時的規律:

(1)當除數大於1,商小於被除數;

(2)當除數小於1(不等於0),商大於被除數;

(3)當除數等於1,商等於被除數。

“[ ]”叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。

二、分數除法解決問題

1,解法:(1)方程: 根據數量關系式設未知量為X,用方程解答。

解:設未知量為X (一定要解設),再列方程 用 X×分率=具體量

例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知.)解:設母雞有X只。列方程為:X×1/3=20

(2)算術(用除法):單位“1”的量未知用除法:

即已知單位“1”的幾分之幾是多少,求單位“1”的量。

分率對應量÷對應分率 = 單位“1”的量

例如:公雞有20隻,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知,)用除法,列式是:20÷1/3

2、看分率前有沒有比多或比少的問題;

分率前是“多或少”的關系式:

(比少):具體量÷ (1-分率)= 單位“1”的量;

例如:桃樹有50棵,比蘋果樹少1/6,蘋果樹有多少棵。

列式是:50÷(1-1/6)

(比多):具體量÷ (1+分率)= 單位“1”的量

例如:一種商品現在是80元,比原價增加了1/7,原價多少?

列式是:80÷(1+1/7)

3、求一個數是另一個數的幾分之幾是多少: 用一個數除以另一個數,結果寫為分數形式。

例如:男生有20人,女生有15人,女生人數占男生人數的幾分之幾。

列式是:15÷20=15/20=3/4

4、求一個數比另一個數多幾分之幾的方法:

用兩個數的相差量÷單位“1”的量 =分數

即①求一個數比另一個數多幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。

例如:5比3多幾分之幾?(5-3)÷3=2/3

②求一個數比另一個數少幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。

例如:3比5少幾分之幾?(5-3)÷5=2/5

說明:多幾分之幾不等於少幾分之幾,因為單位一不同。

5、工程問題:把工作總量看作單位“1”,合做多長時間完成一項工程用1÷效率和,即1÷(1/時間+1/時間),(工作效率=1/時間)

例如:一項工程甲單獨做要5天完成,乙單獨做要10天完成,甲單獨做要3天完成,三人合做幾天可以完成?列式:1÷(1/5+1/10+1/3)

第四單元比

(一)、比的意義

1、比的意義:兩個數相除又叫做兩個數的比。

2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分數表示,也可以用小數或整數表示)

15 ∶ 10 = 3/2

前項 比號 後項 比值

3、比可以表示兩個相同量的關系,即倍數關系。例:長是寬的幾倍。

也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。

4、區分比和比值

比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。

比值:相當於商,是一個數,可以是整數,分數,也可以是小數。

5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。

6、比和除法、分數的聯系:

比 前 項 比號“:” 後 項 比值

除 法 被除數 除號“÷” 除 數 商

分 數 分 子 分數線“—” 分 母 分數值

7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。

8、根據比與除法、分數的關系,可以理解比的後項不能為0。

9、體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。

10、求比值:用前項除以後項,結果最好是寫為分數(不會約分的就不約分)

例如:15∶ 10=15÷10=15/10=3/2

(二)、比的基本性質

1、根據比、除法、分數的關系:

商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。

比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。

2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。

3、根據比的基本性質,可以把比化成最簡單的整數比。

4.化簡比:

(2)用求比值的方法。注意: 最後結果要寫成比的形式。

例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2

還可以15∶10 = 15÷10 = 3/2最簡整數比是3∶2

5、比中有單位的,化簡和求比值時要把單位化相同再化簡和求比值,結果沒有單位。

6.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。一般有兩種解題法

1,用分率解:按比例分配通常把總量看作單位一,即轉化成分率。要先求出總份數,再求出幾份占總份數的幾分之幾,最後再用總量分別乘幾分之幾。

例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?

1+4=5 糖佔1/5 用 25×1/5得到糖的數量,水佔4/5 用 25×4/5得到水的數量。

2,用份數解:要先求出總份數,再求出每一份是多少,最後分別求出幾份是多少。

例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?

糖和水的份數一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

第五單元圓的認識

一、認識圓形

1、圓的定義:圓是由曲線圍成的一種平面圖形。

2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。

4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內最長的線段。

5、圓心確定圓的位置,半徑確定圓的大小。

6、在同一個圓內或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。

7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2

8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。

9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。

10、只有1條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是: 長方形;只有3條對稱軸的圖形是: 等邊三角形;只有4條對稱軸的圖形是: 正方形;有無數條對稱軸的圖形是: 圓、圓環。

11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。

二、圓的周長

1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。

2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長。或者用線圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。

發現,圓周長與它直徑的比值(圓周長除以直徑)是一個固定數即3倍多一點,我們把它叫做圓周率用字母π表示。

3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。用字母π(pai) 表示。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。

(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。

(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

4、圓的周長公式: 圓的周長等於圓周率乘直徑用字母表示C= πd

(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示

d = C ÷π或圓的周長等於2乘圓周率乘半徑,用字母表示C=2πr

(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,

用字母表示 r = C ÷ 2π(r = C / 2π)

5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。

6、區分周長的一半和半圓的周長:

(1)、周長的一半:等於圓的周長÷2

計算方法:2π r ÷ 2 即C半= π r

(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:半圓的周長=5.14 r (推導過程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)

三、圓的面積

1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。

2、圓面積公式的推導:(1)把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。長方形的長相當於圓的周長的一半,長方形的寬相當於圓的半徑。

(2)拼出的圖形與圓的周長和半徑的關系。

圓的半徑 = 長方形的寬

圓的周長的一半 = 長方形的長

3、圓面積的計算方法:因為:長方形面積 = 長 ×寬

所以:圓的面積 = 圓周長的一半 × 圓的半徑

即S圓 = C÷2× r=πr × r=πr

圓的面積公式:S圓 =πr → r = S 圓÷ π

4、環形的面積:一個環形,外圓的半徑用字母R表示,內圓的半徑用字母r表示。(R=r+環的寬度.)

S環 = πR -πr 或環形的面積公式:S環 = π(R -r )(建議用這個公式)。

5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小的倍數是這倍數的平方倍。

例如:在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。

6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。

例如:兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π

8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。

9、常用各π值結果:π = 3.14;2π = 6.28 ;5π=15.7

10、外方內圓(內切圓)公式S=0.86r 推導過程:S=S正-S圓=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r

11、外圓內方(外切圓)公式S=1.14r 推導過程:S=S圓-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)

12、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關。

13、S扇=S圓×n/360;S扇環=S環×n/360

14、扇形也是軸對稱圖形,有一條對稱軸。

15、常見半徑與直徑的周長和面積的結果。

半徑 半徑的平方 直徑 周長 面積

1 1 2 6.28 3.14

2 4 4 12.56 12.56

3 9 6 18.84 28.26

4 16 8 25.12 50.24

5 25 10 31.4 78.5

6 36 12 37.68 113.04

7 49 14 43.96 153.86

8 64 16 50.24 200.96

9 81 18 56.52 254.34

10 100 20 62.8 314

1.5 2.25 3 9.42 7.065

2.5 6.25 5 15.7 19.625

3.5 12.25 7 21.98 38.465

4.5 20.35 9 28.26 63.585

5.5 30.25 11 34.54 94.985

7.5 56.25 15 47.1 176.625

;

G. 六年級數學必考知識點有哪些

六年級數學必考知識點總結如下:

一、倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

二、利潤

利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)。

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

三、小數

自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414。

四、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

五、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。


H. 小學六年級數學都學有哪些知識詳細一點

小學六年級數學學的知識有:
上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數
下冊:圓柱和圓錐、扇形統計圖、正反比例

I. 六年級數學上冊必考知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

6、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

7、整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。

8、小數的倒數的普通演算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1。

9、用1計演算法:也可以用1去除以這個數,例如0.25,1/0.25等於4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。

10、分數除法:分數除法是分數乘法的逆運算。

11、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

12、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

13、分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

14、比和比例比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同於算式中等號左邊的式子,是式子的一種;比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同。

所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項後項各2個。

15、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。比的性質用於化簡比。比表示兩個數相除;只有兩個項:比的前項和後項。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。

J. 小學六年級上冊數學必考知識點有哪些

小學六年級上冊數學必考知識點如下:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

2、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

3、在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。

4、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。

5、假分數的倒數小於或等於1。