㈠ 初三上冊數學知識點歸納
初三數學知識點 第一章 二次根式 1 二次根式:形如a
(0a)的式子為二次根式;
性質:a
(0a)是一個非負數;
02
aaa
;
02
aaa
。
2 二次根式的乘除: 0,0
baabba;
0,0
bab
ab
a。
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並。
4 海倫-秦九韶公式:)
)()((cpbpppS
,S是三角形的面積,
p為2
c
bap
。
第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方; 公式法:a
acbbx242
因式分解法:左邊是兩個因式的乘積,右邊為零。 3 一元二次方程在實際問題中的應用
4 韋達定理:設21,xx是方程02cbxax的兩個根,那麼有
初三全科目課件教案習題匯總語文數學英語物理化學
a
cxxa
bxx
2121
,
第三章 旋轉 1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換 性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角 旋轉前後的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關於原點對稱的點的坐標 第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧; 平分弦的直徑垂直弦,並且平分弦所對的兩條弧。 3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5 點和圓的位置關系 點在
rd
點在圓上 d=r 點在圓內 d<r
定理:不在同一條直線上的三個點確定一個圓。 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的
圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系 相交 d<r 相切 d=r 相離 d>r
切線的性質定理:圓的切線垂直於過切點的半徑; 切線的判定定理:經過圓的外端並且垂直於這條半徑的直
線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長
相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內切 d=R-r 內含 d<R-r 8 正多邊形和圓
正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 180
rnl
扇形面積:360
2
rnS
10 圓錐的側面積和全面積 側面積: 全面積
11 (附加)相交弦定理、切割線定理
第五章 概率初步
1 概率意義:在大量重復試驗中,事件A發生的頻率nm
穩定在
某個常數p附近,則常數p叫做事件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
n
m
㈡ 請懂數學的人進去,所有初中數學的公式~~~ 謝謝大家!
初中數學知識點歸納.
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對症下葯穩又准,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前後項和比後項,比值不變叫合比。
前後項差比後項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比後項和,比值不變叫等比。
解比例
外項積等內項積,列出方程並解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變數替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變數成正比,積定變數成反比。
正比例與反比例
變化過程商一定,兩個變數成正比。
變化過程積一定,兩個變數成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異於無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
A正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量,
初中數學口訣
上海市同洲模範學校 宋立峰
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對症下葯穩又准,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前後項和比後項,比值不變叫合比。
前後項差比後項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比後項和,比值不變叫等比。
解比例
外項積等內項積,列出方程並解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變數替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變數成正比,積定變數成反比。
正比例與反比例
變化過程商一定,兩個變數成正比。
變化過程積一定,兩個變數成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異於無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
A正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數是否,辨別需分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
直線、射線與線段
直線射線與線段,形狀相似有關聯。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
直平之間是鈍角,平周之間叫優角。
互余兩角和直角,和是平角互補角。
一點出發兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
鈍角界於直平間,平周之間叫優角。
和為直角叫互余,互為補角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特徵。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換後結論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學習肯登攀,手腦並用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負擔。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程
先約後乘公分母,整式方程轉化出。
特殊情況可換元,去掉分母是出路。
求得解後要驗根,原留增舍別含糊。
列方程解應用題
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗准且合題意,問求同一才作答。
添加輔助線
學習幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉構造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯系看。
兩點間距離公式
同軸兩點求距離,大減小數就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個四邊形,三個直角成矩形;
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;
兩對角線若相等,理所當然為矩形。
菱形的判定
任意一個四邊形,四邊相等成菱形;
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線若垂直,順理成章為菱形。
㈢ 初三數學知識要點和公式大全
初三數學復習知識點:
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
㈣ 數學初三知識點歸納有哪些
數學初三知識點如下:
1、含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。2、同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
3、使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
4、若已知函數圖像與x軸的兩個交點坐標,可設為交點式。
5、一元二次方程解法的選擇順序是:先特殊後一般,如沒有要求,一般不用配方法。
㈤ 初中數學都講哪些知識
班級里邊總是有很多的聰明人,但是他們的數學卻是他們的黑洞,而那些學習好的學生我也沒見的他們比誰聰明多少了,那為什麼會有學習好和差呢?為什麼別人總是學習好的呢?那是因為他們用對了學習數學的方式方法了,所以提高分數會很快.那麼怎麼樣學初中數學就能超過那些比自己學習好的人了呢?
輔導數學作業
第四點:數學所學習的公式都是必須要記住的,因為會在題目中用到,而且很關鍵,所以每天都要背一遍,在睡前在背一遍,第二天早上醒來在背一遍,以此類推,永久就不會忘記了.
最後,要仔細的對待數學這門科目,這可是能決定你以後上哪所大學的關鍵呢!怎麼樣學初中數學的方式方法到這里就結束了,希望同學們可以按照上邊的方法做一遍,是會收獲到很打的驚喜哦!
㈥ 初中數學中考復習知識點
一、相似三角形(7個考點)
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4:相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
二、銳角三角比(2個考點)
考點5:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點6:解直角三角形及其應用
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
三、二次函數(4個考點)
考點7:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點8:用待定系數法求二次函數的解析式
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點9:畫二次函數的圖像
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點10:二次函數的圖像及其基本性質
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
四、圓的相關概念(6個考點)
考點11:圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點12:圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點13:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點14:直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點15:正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
五、數據整理和概率統計(9個考點)
考點16:確定事件和隨機事件
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點17:事件發生的可能性大小,事件的概率
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點18:等可能試驗中事件的概率問題及概率計算
考核要求
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點19:數據整理與統計圖表
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
考點20:統計的含義
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點21:平均數、加權平均數的概念和計算
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點22:中位數、眾數、方差、標准差的概念和計算
(1)知道中位數、眾數、方差、標准差的概念;
(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點23:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.
考點24:中位數、眾數、方差、標准差、頻數、頻率的應用
(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;
(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。
㈦ 五四制初中數學教材知識框架總結
初一、初二知識點
有理數
1.1 正數和負數 π是無理數
1.5.1
有理數的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
冪
求n個相同的因數的積的運算叫做乘方。
一般地,在 a^n 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:
1.5.2 科學記數法
一個大於10的數可以表示成a×10n的形式,即有其中1≤a<10,n是比A的整數部分的位數少1的正整數。這種記數方法叫做科學記數法。
1.5.3 近似數和有效數字
一般的,一個近似數四捨五入到哪一位,就說這個數精確到哪一位;這時從左邊第一個不是0的數字起,到末尾數字止,所有的數字都叫這個數的有效數字。
對於科學記數法表示的數,規定它的有效數字就是a中的有效數字。
第二章
一元一次方程
2.1.2 等式的性質
用等號表示相等關系的式子叫做等式。我們用a=b表示一般的等式。
等式性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式性質2:等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
等式的補充性質:對稱性和傳遞性
如果a=b,那麼b=a;
如果a=b,b=c,那麼a=c。
方程:含有未知數的等式。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
將這個數分別帶入原方程的左右兩邊,看這個值能否使方程的兩邊相等。
一、一元一次方程、等式的概念
二、一元一次方程的解法:
去分母、去括弧、移項、合並同類項和系數化一
合並同類項復習
一、 書寫要求
數字與數字相乘,用乘號;數字與字母或字母與字母相乘,乘號省略不寫
數字與字母或括弧相乘時,數字在前
除號寫成分數線,分數線有括弧作用
帶分數應化成假分數
代數式是和或差的形式,並且有單位,代數式應加括弧
二、 列代數式
1、 除以a^2+b 的商是5x的數
2、 減少20%後是a的數
3、 三個連續奇數,中間的一個是2n+3,表示這三個數的立方和。
三、 同類項:所含字母相同,相同字母的指數也相同的項。
所有常數項都是同類項。
合並同類項:同類項的系數相加,結果作為系數,字母和字母的指數不變。
4、若4a^(m^2-1)b^2/5與3a^3b^(n-m)能夠合並,則m=±2,n=4或0
四、添、去括弧
五、化簡求值
工程問題:工作總量=工作效率×工作時間
現實生活問題
1、利潤問題
(1+提價或降價的百分數) 原價=現價;
利潤=售價-進價
2、儲蓄問題
本息和=本金+利息
利息=本金 利率 期數(每個期數內的利息與本金的比叫做利率)
從1999年我國開始對利息徵收20%的個人所得稅,
實得利息=(1-20%) 利息
3、球賽積分問題
4、納稅問題
5、交通問題
6、最優方案問題
3.1.2點、線、面、體
通過兩點的直線只有一條
兩點之間線段最短
等角的補角等,等角的餘角等
過一點有且只有一條直線與已知直線垂直。
垂線段最短
注意問題:
1、 在表示直線、射線、線段時,一定要先寫出文字。
2、 注意延伸與延長的區別,延長與反向延長的區別,延長線要用虛線
3、 注意定義的准確性。本章重要定義:兩點距離、角、中點、角平分線
4、 注意相似圖形的區別:直線與平角,射線與周角
5、 注意點、線、角的表示法,區分大小寫及字母順序
6、 作圖要用鉛筆尺子。尺規作圖要保留痕跡,並寫結論。
7、 論述題要寫推理步驟:題目中的已知作為因為,由已知推理得到的作為所以。
8、 注意區分中點,角平分線三種形式的選取。
9、 注意分類討論。依靠圖形把情況想全面。
10、圖形的折疊與展開可動手實踐。
一 平行線的性質定理:
• 兩直線平行,同位角相等。
• 兩直線平行,內錯角相等 。
• 兩直線平行,同旁內角互補 。
同位角相等
內錯角相等 兩直線平行
同旁內角互補
同位角相等
兩直線平行 內錯角相等
同旁內角互補
如果一個角的兩邊分別平行於另一角的兩邊,則這兩個角相等或互補
第九章 不等式與不等式組
移項要變號
1、 用不等號連接表示不等關系的式子叫不等式。
2、 不等式的基本性質:
性質1:不等式兩邊都加上(或減去)同一個數或式子,不等號方向不變。
性質2:不等式兩邊都乘(或除以)同一個正數,不等號方向不變。
性質3:不等式兩邊都乘(或除以)同一個負數,不等號方向改變。
互逆行:若a>b,則b<a
傳遞性:若a>b, b>c,則a>c
3、 使不等式成立的每一個未知數的值叫不等式的解。
不等式的所有解叫不等式的解集。解集是范圍,解是具體的數。
4、 解集在數軸上的表示:兩定
一定邊界點:含於解集為實心點;不含於解集為空心點
二定方向:大於向右,小於向左
5、 一元一次不等式的解法:去分母、去括弧、移項變號、合並同類項(化成ax>b或ax<b的形式)、系數化一(當系數是負數時,注意變號)
6、 幾個一元一次不等式的解集的公共部分叫一元一次不等式組的解集。
解法:分別解,再求解集。
同大取大;同小取小;大小取中;矛盾無解
注意:解集用小於連接。例:-2<x<3
7、 應用題:
注意超過、不小於、不大於、至少、最多等關鍵字。
注意隱含條件。
注意設法:不寫「至少」
一元一次不等式:
1、不等式的性質(尤其是性質三)
2、會解不等式(組),利用數軸找解集(不等式組要寫解集再取整數解,數軸要有原點、箭頭),應用題(注意關鍵字,是否帶等號)。
第七章 三角形
一、用不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
二、三角形中的三條重要線段:
1、三角形的角平分線
2、三角形的中線
3、三角形的高線
要求掌握: 定義、書寫格式、畫法(鈍角三角形)、交點結論
三、三角形三邊關系定理及推論
兩邊差<第三邊<兩邊和
三角形具有穩定性,而四邊形沒有
四、三角形的分類:按邊分和按角分
五、三角形內角和
三角形的內角和等於180°。
定理證明、書寫、例題(整體思想和方程思想)
在△ABC中,∵∠A+∠B+∠C=180°
六、三角形的外角
1、三角形的一邊與另一邊的延長線組成的角。
2、三角形的一個外角等於與它不相鄰的兩個內角的和。
3、三角形的一個外角大於與它不相鄰的任何一個內角。
書寫:∵∠ADB是△ADC的外角
∴∠ADB=∠C+∠DAC
∴∠C=∠ADB-∠DAC
七、多邊形
1、對角線:
2、n邊形的內角和等於(n-2)180°
3、多邊形的外角和等於360°,與邊數無關
4、各個角都相等,各條邊都相等的多邊形叫正多邊形。
八、正多邊形中,只有正三角形、正方形、正六邊形可以用來鑲嵌。
注意:畫圖用鉛筆,要准確,標明字母,寫結論
方位角、用三個字母表示角。
輔助線及延長線是虛線。
常用方法:分類討論思想、方程思想
整體思想、見比設份數
三角形:
1、三角形三邊關系定理,第三邊的范圍。
2、掌握三角形中三條重要線段的定義、推理形式、畫法(鉛筆、標字母、寫結論)。
3、三角形內角和定理,嚴格推理形式。
4、三角形外角定理及推論,嚴格推理形式。
5、多邊形的內角和及外角和定理,會構造方程。
6、鑲嵌:任意三角形、四邊形和正六邊形可鑲嵌。
7、會寫四步以內幾何推理。不用寫理由。
第十章 實數
1、算術平方根:一個正數的平方等於a,即x2=a,那麼正數x叫做a的算術平方根。
(算術平方根的取值范圍)
(被開方數的取值范圍,使式子有意義)
2、平方根:如果一個數的平方等於a,即x2=a,那麼x叫做a的平方根。
3、正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根。
4、求一個數的平方根的運算叫開平方。平方與開平方互為逆運算。
5、立方根:如果一個數的立方等於a,即x3=a,那麼x叫做a的立方根。
6、正數有一個正的立方根;負數有一個負的立方根;0的立方根是0。
7、求一個數的立方根的運算叫開立方。立方與開立方互為逆運算。
8、無限不循環小數叫無理數。
三類數:含 的式子;開不盡方根的數;類似循環實際不循環的小數
9、有理數和無理數統稱實數。實數還可分為正數、0、負數 注意:分數都是有理數
10、實數與數軸上的點一一對應。
11、實數的絕對值、相反數、倒數的概念與有理數中相同。
12、實數的近似值 。會比較兩數大小
會背1到20的平方,1到10的立方
第六章 平面直角坐標系
1、平面直角坐標系的概念:
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系.
水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸為y軸或縱軸,取向上方向為正方向;
兩個坐標軸的交點為平面直角坐標系的原點。
2、點的坐標:有序實數對
(1)點p(a,b)到x軸的距離為︱b︱
點p(a,b)到y軸的距離為︱a︱
(2)x軸上的點縱坐標為0
在x軸上方的點縱坐標大於0
在x軸下方的點縱坐標小於0
(3)y軸上的點橫坐標為0
在y軸右方的點橫坐標大於0
在y軸左方的點橫坐標小於0
(4)平行於x軸的直線上的點的縱坐標相同
平行於y軸的直線上的點的橫坐標相同
(5)在第一三象限角平分線上的點的橫、縱坐標相等
在第二四象限角平分線上的點的橫、縱坐標相反
3、用坐標表示平移:
(1)在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x + a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y + b)(或(x,y - b)).
(2)在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向 左(或向右)平移a個單位長度;
在平面直角坐標系內,如果把一個圖形各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
4、建立直角坐標系表示點的位置
5、坐標平面內的點與有序實數對一一對應。
注意:建立坐標系要完整。用鉛筆畫圖,畫圖不整潔要扣分。
圖形的這種移動叫平移變換,簡稱平移。
1、平移的兩條基本特徵;
2、圖形的移動為平移變換的重要標志:
圖形在移動的過程中,
自身的形狀和大小沒有發生變化
自身的方向始終沒有發生變化
3、數學與實際生活息息相關。
第十一章 一次函數
1、 常量與變數;(非重點)
2、 函數概念;(非重點)
3、掌握自變數的取值范圍:
使解析式有意義:分母不為0;二次根號下的式子有非負性
使實際問題有意義:注意邊界點及是否要取整
4、 函數的三種表示方法:解析法、列表法、圖像法
5、點在函數圖像上(函數圖像過這個點) 點的坐標滿足函數解析式
6、正比例函數概念:y=kx (k是不為0的常數)
圖像:過原點的一條直線
性質:k>0 直線過第一、三象限,y隨x的增大而增大
k<0 直線過第二、四象限,y隨x的增大而減小
7、一次函數概念:y=kx+b(k,b為常數,k不為0)
正比例函數是特殊的一次函數
圖像:一條直線
性質:k>0 ,y隨x的增大而增大
k<0 ,y隨x的增大而減小
b>0 直線與y軸交於正半軸
b<0 直線與y軸交於負半軸
b=0 直線過原點即為正比例函數
k相同的直線可互相平移得到
(k,b與一次函數圖像之間的關系見筆記)
注意:畫一次函數圖像時,只需找兩點即可
步驟:列表、描點、連線
8、用函數分析方程和不等式;
會求函數值,會求兩個函數的交點坐標,並會比較兩個函數的大小關系(會識圖);給出y(或x)的范圍會求x(或y)的范圍.
9、求函數解析式:用待定系數法求解析式;利用圖形找點求解析式
10、會看分段函數圖像
重點:變數與函數知識的掌握要突出討論意識。
函數的概念、性質、應用都應該強調討論;運用函數圖象進行的討論
《數據》復習
一.本章知識結構
本章共有三小節內容。
第1小節「幾種常見的統計圖表」主要在已經學過的條形圖、折線圖和扇形圖等統計圖的基礎上,進一步認識這幾種常見的統計圖,並引進一種新的統計圖——頻數分布直方圖;
第2小節「用圖表描述數據」包含兩層含義:根據問題選擇適當的統計圖來描述數據和學習製作統計圖表的方法;
第3小節「課題學習」旨在讓學生綜合利用已學的統計知識和方法從事統計活動,經理收集、整理、描述和分析數據的基本過程。
二、.課程學習目標
1. 進一步認識條形圖、折線圖、扇形圖,掌握它們各自的特點;
2. 會畫扇形圖,會用扇形圖描述數據;
3. 理解頻數的概念,了解頻數分布的意義和作用;
4.根據需要對數據進行適當分組;會列頻數分布直方圖和頻數折線圖,並會用它們描述數據。
5.感受統計在生產生活中的作用,建立統計觀念,培養實事求是的科學態度
數據收集的過程一般包括:明確調查問題、確定調查對象、選擇調查方法、展開調查、記錄結果。
表示數據的兩種方法:
1、利用統計表
2、利用統計圖:條形圖、折線圖、扇形圖
全等三角形
一、課程學習目標
1、了解全等三角形的概念和性質,能夠准確的辨認全等三角形的對應元素。
2、探索三角形全等的條件,能利用三角形全等進行證明。
3、會做角的平分線,了解角平分線的性質,會利用角平分線的性質進行證明。
二、知識內容小結
13.1 全等三角形
1、定義: 能夠完全重合的兩個三角形叫做全等三角形。
相關概念:對應頂點、對應邊、對應角
2、全等三角形的性質:
全等三角形的對應邊相等
全等三角形的對應角相等
結論:經過平移、翻折、旋轉前後的圖形全等。
13.2 三角形全等的條件
「邊邊邊」(SSS):
三邊對應相等的兩個三角形全等
「邊角邊(SAS):
兩邊和它們的夾角對應相等的兩個三角形全等。
「角邊角」(ASA):
兩角和它們的夾邊對應相等的兩個三角形全等。
「角角邊」(AAS):
兩個角和其中一個角的對邊對應相等的兩個三角形全等。
「斜邊直角邊」(HL):
在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等。
13.3 角平分線的性質
角平分線的尺規畫法。
角平分線的性質:角的平分線上的點到角的兩邊的距離相等。
角平分線的判定:到角的兩邊距離相等的點在角的平分線上。
結論:三角形的三條角平分線相交於一點,該點到三角形三條邊的距離相等。
三、復習建議
1、通過證明兩個三角形全等從而得到邊等、角等的關系是一種常用的方法。在初學證明兩個三角形全等時,讓學生養成良好的書寫習慣是十分必要的。所以我們應要求學生把對應頂點字母寫在對應位置上,書寫格式一定要規范。
如:已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
2、用「三找」模式證明三角形全等。
一找已知,最好在圖中標注出來;
二找隱含,通過圖形語言告訴的已知,如公共角是對應角,公共邊是對應邊,對頂角是對應角。
三找欠缺,根據題目中的已知條件證明欠缺條件。
3、及時幫助學生進行小結。將零散的知識概念進行整理,形成系統和網路是學生學習過程中很重要的一環,教師要有意識進行引導。如:已知兩個三角形全等,除了書上給出的全等三角形的對應邊相等;對應角相等以外,能夠得到的常用結論有:全等三角形對應邊上的中線、高相等;對應角的平分線相等;周長相等;面積相等。
再如判斷三角形全等的方法有五個,如何選擇這些方法呢?建議教師可以以表格形式給出如下小結:
已 知 可選用的方法
兩邊對應相等 SAS、SSS
兩角對應相等 AAS、ASA
一邊和一角對應相等 ASA、AAS、SAS
判斷兩個直角三角形全等,首先考慮使用HL,除此以外還可以考慮使用SAS、AAS、ASA
4、應重視所學內容在生活中的實際應用,培養學生學以致用的意識。
用三角形全等可以說明實際測量方法的道理,例如,測量池塘兩端的距離,測量河兩岸相對兩點的距離,用卡鉗測量工件的內槽寬,還安排了利用三角形全等測量旗桿高度的數學活動。
5、中考創新題。
一、補充條件型;
例:已知AB=AC,如果要判定△ADC≌△AEB,需添加條件__________
二、探索結論型;
例:如圖,已知AB∥DE,AB=DE,AF=DC,請問途中有哪幾對全等三角形?並任選一對給與證明。
三、編擬命題型
例: 在△AFD和△CEB中,點A,E,F,C在同一條直線上,有下面四個論斷:
(1) AD=CB(2)AE=CF(3)∠B=∠D(4)AD∥BC
請用其中三個作為條件,餘下一個作為結論,編一道數學問題,並寫出解答過程。
已知:_______________________________________________________
求證:______________________
證明:
四、易錯問題及應注意的問題
1、判定兩個直角三角形全等時,學生易將HL與SAS弄混。
有不少學生在判斷兩個直角三角形全等時,只要找到兩條邊對應相等就認為是HL定理。所以提醒學生注意,分清所找的邊是關鍵。如果找到的是兩條直角邊對應相等,使用的定理是SAS,一條斜邊和一條直角邊對應相等,使用的定理才是HL。
2、注意引導學生關注典型反例。
如:有兩邊和其中一邊上的高線對應相等的兩個三角形全等。
有兩邊和第三邊上的高線對應相等的兩個三角形全等。
這兩個命題均為假命題,但學生及易犯錯,原因是學生易忽略鈍角三角形高在三角形外的情況。
再如: AAA, SSA不成立的反例圖:
DE∥BC AD=AC
3、注意角平分線性質性質和判定定理的使用條件,記住典型圖形,線段CD或BD為常添輔助線。
4、有多個垂直關系時,常用等角的餘角等證明角等。
有一條對稱軸——直線
圖形沿軸對折(翻轉180°)
翻轉後和另一個圖形重合
整式
冪的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
冪
求n個相同的因數的積的運算叫做乘方。
一般地,在 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:
分式
分清「且」「或」
約分:約去公因式
分子分母為乘積形式才可約分
分式方程要檢驗
去分母別漏乘常數項
移項要變號
不能假檢驗
分式方程應用題要雙驗
勾股定理
1、勾股定理 注意:前提在直角三角形中
會利用定理進行邊的計算 a2+b2 =c2
2、勾股定理的證法 書或課件或新學案43頁
3、勾股逆定理 注意:哪個角是直角(最大邊所對角)
會用逆定理判定直角三角形
4、會寫逆命題:題設與結論與原命題相反
5、常用勾股數:
3k,4k,5k; 5k,12k,13k;
7,24,25; 8,15,17; 9,40,41
6、常用輔助線:構造直角三角形
7、注意勾股定理及逆定理的書寫格式
8、 已知直角三角形兩邊求第三邊
(分類討論)
已知兩直角邊求斜邊上的高
(雙垂直圖形,等積式)
9、含30º角的直角三角形三邊比為 1:2:
等腰直角三角形三邊比為 1:1:
10、勾股定理常作為列方程的隱含條件
四邊形復習
項目
四邊形 對邊 角 對角線 對稱性
平行四邊形
矩形
菱形
正方形
等腰梯形
四邊形 條件
平行
四邊形 1、定義:兩組對邊分別平行
2、兩組對邊分別相等
3、一組對邊平行且相等
4、兩組對角分別相等
5、對角線互相平分
矩形 1、定義:有一個角是直角的平行四邊形
2、三個角是直角的四邊形
3、對角線相等的平行四邊形
菱形 1、定義:一組鄰邊相等的平行四邊形
2、四條邊都相等的四邊形
3、對角線互相垂直的平行四邊形
正方形 1、定義:一組鄰邊相等且有一個角是直角的平行四邊形
2、有一組鄰邊相等的矩形
3、有一個角是直角的菱形
等腰梯形 1、兩腰相等的梯形 2 、在同一底上的兩角相等的梯形 3、對角線相等的梯形(結論)
順次連接四邊形各邊中點所得圖形為平行四邊形
順次連接對角線相等的四邊形各邊中點所得圖形為菱形
順次連接對角線互相垂直的四邊形各邊中點所得圖形為矩形
順次連接對角線相等且垂直的四邊形各邊中點所得圖形為正方形
1、連接對角線
2、構造平行四邊形
3、軸對稱圖形,對稱軸上任一點與對稱點的連線相等。
4、直角三角形中,有斜邊中點,常作斜邊中線
5、梯形:做高、平移腰、平移對角線(對角線垂直時)
輔助線要寫在證明第一行,用虛線,交代新添字母位置
本章常用定理
等腰三角形三線合一 中垂線定理
反比例函數復習
1、 定義: (k是不為0的常數)
y是x的反比例函數 y與x成反比例 y=kx-1
2、 自變數x≠0 函數y≠0
3、 反比例函數圖像是雙曲線
4、 當k>0時,圖像在第一、三象限,在每一個象限內,y隨x的增大而減小;
當k<0時,圖像在第二、四象限,在每一個象限內,y隨x的增大而增大.
注意:增減性取決於k,與x無關。
K<0
5、 兩條雙曲線既是中心對稱圖形(關於原點對稱),又是軸對稱圖形(對稱軸是y=x和y=-x)。
兩分支無限接近坐標軸,但不與坐標軸相交。
|k|越大,圖像離坐標原點越遠。
6、 反比例函數 與正比例函數y=k2x
當k1k2同號時,兩交點關於原點對成;異號時無交點。
7、實際問題中,自變數取值通常為正,圖像通常在第一象限。
8、必會題型:
1) 待定系數法求函數解析式
提醒:設兩個函數解析式要區分k
2) 面積問題 S矩形=|k| S三角形= |k|
3) 比較函數值
4)會比較一次函數與反比例函數大小
5)會求一次函數與反比例函數交點坐標
本章約佔10分,有一道6分解答題,為一次函數與反比例函數綜合題
4)
根據圖象寫出使反比例函數的值大(小)於一次函數的值的x的取值范圍。
中位數定義:
一組數據按大小順序排列,位於最中間的一個數據
叫做這組數據的中位數
1.求中位數要將一組數據按大小順序,顧名思義,中位數就是位置
處於最中間的一個數(或最中間的兩個數的平均數),排序
時,從小到大或從大到小都可以.
2.眾數是一組數據中出現次數最多的數據,是一組數據中的原數據,而不是相應的次數.眾數有可能不唯一,注意不要遺漏.
鞋店老闆一般最關心眾數
公司老闆一般以中位數為銷售標准
裁判一般以平均數為選手最終得分
3.中位數只需很少的計算,不受極端值的影
響,這在有些情況下是一個優點.
一元二次方程
注意:
1、判斷是否為一元二次方程要先化為一般形式再判斷。未知數出現在分母或根號中的方程不是一元二次方程。
2、ax2+bx+c=0是否為一元二次方程只與a有關,與b,c無關。
3、各項系數及常數項相對於一般形式而言,而且注意前面符號。
形如 x2=k或a(x-m)2=k的方程可利用開平方法求解。
注意a和k對方程解的影響
一元二次方程根的判別式
應用:不解方程判斷根的情況;給出根的情況,求待定系數的值或范圍。
注意:1、與幾何知識的綜合運用
2、注意方程中的字母
這里要特別注意:在列一元二次方程解應用題時,由於所得的根一般有兩個,所以要檢驗這兩個根是否符合實際問題的要求
在平面內,將一個圖形繞一個定點旋轉一定的角度,這樣的圖形變換叫做圖形的旋轉.這個定點叫旋轉中心.旋轉的角度稱為旋轉角
圖形的旋轉不改變圖形的形狀、大小,只改變圖形的位置.
旋轉中心在對應點連線的垂直平分線上。
性質1 關於中心對稱的兩個圖形是全等形。
性質2 關於中心對稱的兩個圖形,對稱點的連線都經過對稱中心,並且被對稱中心平分。
如果兩個圖形的對應點連成的線段都經過某一點,並且被該點平分,那麼這兩個圖形一定關於這一點成中心對稱。
㈧ 初三數學基礎知識點有哪些
初三數學基礎知識點:
一、方程(組)與不等式(組)
1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。
3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。
4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。
二、有理數
1、有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
「大」減「小」是指絕對值的大小。
2、有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則。
同號得正異號負,一項為零積是零。
三、二次函數解析式的表示方法
1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;
2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;
3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。
㈨ 初中數學什麼資料好
初中數學資料包網路網盤資源免費下載
鏈接: https://pan..com/s/1f13JRsXAHfS6MFKnu7XRfQ
初中數學資料包|中考數學總復習資料.pdf|中考數學選擇題的答題技巧.pdf|數學幾何知識點大全.pdf|人教版初中數學知識點總結.pdf|初中數學常用公式定理.pdf
㈩ 初一到初三所有數學公式
常用數學公式
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
---------------------------------
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
-----------------------
可能還有少部分中考不怎麼考得沒總結出來,你可以不斷補充下去……