當前位置:首頁 » 基礎知識 » 高一數學知識手冊大全

高一數學知識手冊大全

發布時間: 2022-08-19 12:45:28

⑴ 推薦幾本高中數學比較好用的工具書。

你好,很高興地解答你的問題。
《高中數學知識大全》
《高中數學知識清單》
《高中數學基礎知識手冊》
《高中數學解題王》

⑵ 高一上學期數學重點知識點有哪些

高一上學期數學重點知識點有如下:

一、圓錐曲線的方程

1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。

2、雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。

3、拋物線:y2=±2px(p>0),x2=±2py(p>0)。

二、函數奇偶性

1、如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

2、如果對於函數定義域內的任意一個x,都有f(x)=f(-x),那麼函數f(x)就叫做偶函數。

三、求函數值域的方法

1、直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數。

2、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。

四、二次函數的零點

1、△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

2、△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3、△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

五、求函數定義域的主要依據

1、分式的分母不為零。

2、偶次方根的被開方數不小於零,零取零次方沒有意義。

3、對數函數的真數必須大於零。

⑶ 高一數學知識點有哪些

1、集合(包括:集合與幾何的表示方法;集合之間的關系與運算)

2、函數(函數的表示方法;單調性與奇偶性;一次函數和二次函數;函數的應用與方程)

3、基本初等函數(指數與指數函數;對數與對數函數;冪函數及函數的應用)

4、數列:這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等。

(3)高一數學知識手冊大全擴展閱讀:

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

⑷ 高一必修數學知識點

一、集合:集合關系與充分、必要條件;含參、含絕對值即高次不等式解法(穿根);四種命題與充要條件。
二、函數:所有知識點。
三、數列:特殊數列的特殊方法,掌握累加,累乘,錯位相減,列項相消等方法,熟記基本公式。
四、三角函數:公式;圖像與性質;運用正、餘弦定理解三角形角與邊;
五、平面向量:向量與向量的運算;平面向量的坐標運算;平面向量的數量積及運算;線段的定比分點與平移;解斜三角形。
六、不等式(不知道這個是不是你說的方程式,就先寫上了):主要是一些證法和定論。

我是今年剛畢業的高三學生,這些都是我的筆記,希望對你有所幫助,好好學哦,加油!!!

⑸ 高一數學必修一知識點總結

高一數學必修1第一章知識點總結

一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=








質 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.

例題:
1.下列四組對象,能構成集合的是 ( )
A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等於它自身的實數
2.集合{a,b,c }的真子集共有 個
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關系是 .
4.設集合A= ,B= ,若A B,則 的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
 相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數的定義域:
⑴ ⑵
2.設函數 的定義域為 ,則函數 的定義域為_ _
3.若函數 的定義域為 ,則函數 的定義域是
4.函數 ,若 ,則 =

6.已知函數 ,求函數 , 的解析式
7.已知函數 滿足 ,則 = 。
8.設 是R上的奇函數,且當 時, ,則當 時 =
在R上的解析式為
9.求下列函數的單調區間:
⑴ (2)
10.判斷函數 的單調性並證明你的結論.
11.設函數 判斷它的奇偶性並且求證: .

⑹ 高一數學知識點有哪些

高一數學知識點總結:

1、函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2、復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

數學

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精練早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。

以上內容參考:網路--數學

⑺ 高一數學都有哪些知識模塊

高中數學知識體系一覽表
知 識 模 塊
主要知識點,高考考點,熱點
一.集合,函數,數列,不等式
1.常見函數的圖像,性質及其綜合應用 2.等差,等比數列的通項,求和
3.重要不等式和函數,數列的計算,應用
二.三角函數,向量,復數
1.角的推廣,誘導公式,重要三角函數的圖像,性質及其應用
2.三角函數圖像變換,應用
3.兩角和與差的綜合應用,三角恆等變形 4.向量的計算,數量積,平行,垂直,坐標表示,幾何應用
5.復數的計算,幾何意義
6.三角函數,向量,復數的綜合考察
三.平面解析幾何,直線和圓,圓錐曲線 1.直線與圓的方程和應用
2.橢圓,雙曲線,拋物線的方程,圖像,性質及其應用
3.直線,圓與圓錐曲線的綜合考察 4.動點軌跡問題
5.存在性問題,開放性問題
四.立體幾何,空間直角坐標系,空間向量, 法向量,空間的角和距離 1.點,線,面的位置關系,平行,垂直,空間想像能力考察
2.空間向量,空間直角坐標系,法向量的計算,證明
3.空間的角和距離的計算,證明綜合考察

五. 排列、組合、二項式定理、概率、
統計
1.排列,組合,二項式定理的計算,應用 2.概率,統計問題的討論,計算 3.回歸直線方程的求解 4.各種概率模型的簡單應用
六.極限與導數,微積分
1.極限與導數的計算,應用
2.利用導數求曲線的斜率,函數的單調性,極值,最值及其他綜合應用

七.參數方程,極坐標,不等式選講,幾何證明選講 1. 參數方程,極坐標的計算,轉化,應用 2.柯西不等式,排序不等式等簡單應用
3.簡單幾何證明的應用

八.常用數學思想方法
1. 分類討論的思想方法 2. 數形結合的思想方法 3. 函數與方程的思想方法 4. 轉化與化歸的思想方法

⑻ 求高一上冊數學知識點全歸納

高一上學期的數學內容並不多,但是難度不低。難度並不在於知識點的深度和綜合能力,而在於從初中相對具體形象的數學學習一下進入高中抽象的,與生活似乎關系不大的學習,很多同學表現出非常大不適應。因此,如果覺得高一數學「難」,復習的重點,應當放在分析為什麼自己覺得學習過的知識點「難」上。難點一:抽象函數F規則的含義雖然看起來簡單,但如果理解不深刻,對於後面的解題有很大的影響。解決抽象函數難點的思路主要有這樣兩條:(1) 將抽象函數的內容與具體函數的性質結合起來。抽象函數作為理解函數的一個上位的要求,對於所有的具體函數都具有指導意義。高一學習的指數,對數和冪三種函數的具體性質,都是抽象函數性質在具體函數中的表現。函數的定義域,值域,單調性,奇偶性,這些內容既是抽象函數的核心內容,又是具體函數具體性質的表現。結合起來記憶,效果更好。(2) 所有和抽象函數相關的綜合問題,一定首先想辦法將抽象函數的條件化為具體條件,轉化的方法,就是利用抽象函數的性質。很多綜合題中都會出現抽象函數的條件,對於這種題目,首先要解決的就是將這些條件中的f去掉。比如f(a)<f(b),保留f,無論a與b如何簡單,不利用單調性條件去掉f,問題都解決不了。難點二:三角函數這一部分的重點是一定要從初中銳角三角函數的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數題目的時候畫直角三角形協助理解,這是十分危險的,也是我們所不提倡的。三角函數的定義在引入了實數角和弧度制之後,已經發生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數——弧度制的角。有了這樣一個思維上的飛躍,三角函數就不再是三角形的一個附屬產品(初中三角函數很多時候依附於相似三角形),而是一個具有獨立意義的函數表現形式。既然三角函數作為一種函數意義的理解,那麼,它的知識結構就可以完全和函數一章聯系起來,函數的精髓,就在於圖象,有了圖象,就有了所有的性質。對於三角函數,除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數中應用廣泛是一個道理。三角恆等變形部分,並無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發現,高一考察的三角恆等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結三角恆等變形的「統一論」,把握住降次,輔助角和萬能公式這些關鍵方法,一般的三角恆等迎刃而解。關鍵是,一定要多做題。難點三:向量部分這部分其實是這學期最簡單的部分。簡單的原因是,以前從來沒有學過,初次接觸,考試不會太難。這部分的復習也最為輕松——圍繞向量的幾何表示,代數表示和坐標表示理解向量的各種運演算法則。難點四:綜合題型壓軸題基本上,都是以函數一章作為最核心的知識載體,中間摻雜向量和三角的運算。解決這樣的題目,方法幾乎是固定的,那就是首先利用抽象函數性質,將帶有f的條件化為不帶有f的條件,然後利用三角與向量的運算化簡或證明。非壓軸題出題方法可能更自由,但是綜合性往往沒有太強,仍然屬於各個板塊內的綜合。