當前位置:首頁 » 基礎知識 » 六年數學知識要點
擴展閱讀
教育與金融學哪個好 2024-11-06 19:45:48

六年數學知識要點

發布時間: 2022-08-18 23:33:32

⑴ 小學六年級數學都學有哪些知識詳細一點

小學六年級數學學的知識有:
上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數
下冊:圓柱和圓錐、扇形統計圖、正反比例

⑵ 六年級上冊數學必考知識點有哪些

六年級上冊數學必考知識點有:

1、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

2、比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

3、直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

4、圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2,用字母S表示。

5、百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。

⑶ 小學六年級上冊數學必考知識點有哪些

小學六年級上冊數學必考知識點如下:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

2、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

3、在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。

4、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。

5、假分數的倒數小於或等於1。

⑷ 六年級數學必考上冊知識點有哪些

六年級數學必考上冊知識點如下:

1、分數乘法:分數的分子與分子相乘,分母與分母相乘,可約分的先約分。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變,分數乘分數,用分子相乘的積作分子,分母相乘的積作分母,但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,求幾個相同加數的和的簡便運算。

4、分數乘整數:數形結合、轉化化歸。

5、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。

許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。

因此,我們可以學習群、環、域和其他的抽象系統。把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。

⑸ 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

⑹ 六年級上冊數學重點知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

⑺ 六年級數學上冊必考知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

6、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

7、整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。

8、小數的倒數的普通演算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1。

9、用1計演算法:也可以用1去除以這個數,例如0.25,1/0.25等於4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。

10、分數除法:分數除法是分數乘法的逆運算。

11、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

12、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

13、分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

14、比和比例比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同於算式中等號左邊的式子,是式子的一種;比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同。

所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項後項各2個。

15、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。比的性質用於化簡比。比表示兩個數相除;只有兩個項:比的前項和後項。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。

⑻ 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點有如下:

1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。

2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。

3、能藉助數軸初步學會比較正數、0和負數之間的大小。

4、16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃。

5、如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。

6、在數軸上,從左到右的順序就是數從小到大的順序。0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。負號後面的數越大,這個數就越小。

⑼ 六年級上冊數學重點知識點有哪些

六年級上冊數學重點知識點如下:

1、分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

2、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

3、分數乘小數

分數乘小數,可以把分數化成小數再乘,也可以把小數化成分數再乘,但一般採用把小數化成分數再乘,因為有些分數化不成有限小數。

4、分數乘分數

分數乘分數的計算方法:分數乘分數,用分子乘分子的積作分子,用分母乘分母的積作分母。

5、分數混合運算

分數混合運算的順序和整數混合運算的順序相同,即:有括弧的,先算括弧裡面的,再算括弧外面的。沒有括弧的,先算乘法,再算加減法。如果只有加減法的,按從左往右的順序計算。

6、整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。

7、圓的面積公式:

圓所佔平面的大小叫做圓的面積。πr^2;用字母S表示。一條弧所對的圓周角是圓心角的二分之一。在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

8、周長計算公式

(1)已知直徑:C=πd。

(2)已知半徑:C=2πr。

(3)已知周長:D=c/π。

(4)圓周長的一半:1/2周長(曲線)。

(5)半圓的周長:1/2周長+直徑(π÷2+1)。

⑽ 六年級數學下冊必考知識點是什麼

六年級數學下冊必考知識點如下:

1、圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。

2、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。

3、把圓錐的側面展開得到一個扇形。

4、把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。

5、約分的方法:用分子和分母的公因數(1除外)去除分子、分母;通常要除到得出最簡分數為止。