當前位置:首頁 » 基礎知識 » 數學課外知識摘抄大全
擴展閱讀
教育與金融學哪個好 2024-11-06 19:45:48

數學課外知識摘抄大全

發布時間: 2022-08-18 22:03:11

A. 數學課外小知識

數學知識
《幾何原本》




《幾何原本》是古希臘數學家歐幾里得的一部不朽之作,是當時整個希臘數學成果、方法、思想和精神的結晶,其內容和形式對幾何學本身和數學邏輯的發展有著巨大的影響.自它問世之日起,在長達二千多年的時間里一直盛行不衰.它歷經多次翻譯和修訂,自1482年第一個印刷本出版後,至今已有一千多種不同的版本.除了《聖經》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比.但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《聖經》所無法比擬的.
公元前7世紀之後,希臘幾何學迅猛地發展,積累了豐富的材料.希臘學者們開始對當時的數學知識作有計劃的整理,並試圖將其組成一個嚴密的知識系統.首先做出這方面嘗試的是公元前5世紀的希波克拉底(Hippocrates),其後經過了眾多數學家的修改和補充.到了公元前4世紀時,希臘學者們已經為建構數學的理論大廈打下了堅實的基礎.
歐幾里得在前人工作的基礎之上,對希臘豐富的數學成果進行了收集、整理,用命題的形式重新表述,對一些結論作了嚴格的證明.他最大的貢獻就是選擇了一系列具有重大意義的、最原始的定義和公理,並將它們嚴格地按邏輯的順序進行排列,然後在此基礎上進行演繹和證明,形成了具有公理化結構的,具有嚴密邏輯體系的《幾何原本》.
《幾何原本》的希臘原始抄本已經流失了,它的所有現代版本都是以希臘評注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據的.《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內容是闡述平面幾何、立體幾何及算術理論的系統化知識.
第一卷首先給出了一些必要的基本定義、解釋、公設和公理,還包括一些關於全等形、平行線和直線形的熟知的定理.該卷的最後兩個命題是畢達哥拉斯定理及其逆定理.這里我們想到了關於英國哲學家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:「上帝啊!這是不可能的.」他由後向前仔細閱讀第一章的每個命題的證明,直到公理和公設,他終於完全信服了. 第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數學.
第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理.這些定理大多都能在現在的中學數學課本中找到.第四卷則討論了給定圓的某些內接和外切正多邊形的尺規作圖問題.
第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數學傑作之一.據說,捷克斯洛伐克的一位並不出名的數學家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內容.他說,這種高明的方法使他興奮無比,以致於從病痛中完全解脫出來.此後,每當他朋友生病時,他總是把這作為一劑靈丹妙葯問病人推薦.
第七、八、九卷討論的是初等數論,給出了求兩個或多個整數的最大公因子的「歐幾里得演算法」,討論了比例、幾何級數,還給出了許多關於數論的重要定理.
第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷.最後三卷,即第十一、十二和十三卷,論述立體幾何.目前中學幾何課本中的內容,絕大多數都可以在《幾何原本》中找到.
《幾何原本》按照公理化結構,運用了亞里士多德的邏輯方法,建立了第一個完整的關於幾何學的演繹知識體系.所謂公理化結構就是:選取少量的原始概念和不需證明的命題,作為定義、公設和公理,使它們成為整個體系的出發點和邏輯依據,然後運用邏輯推理證明其他命題.《幾何原本》成為了兩千多年來運用公理化方法的一個絕好典範.
誠然,正如一些現代數學家所指出的那樣,《幾何原本》存在著一些結構上的缺陷,但這絲毫無損於這部著作的崇高價值.它的影響之深遠.使得「歐幾里得」與「幾何學」幾乎成了同義語.它集中體現了希臘數學所奠定的數學思想、數學精神,是人類文化遺產中的一塊瑰寶.
哥德巴赫猜想






1742年德國人哥德巴赫給當時住在俄國彼得堡的大數學家歐拉寫了一封信,在信中提出兩個問題:第一,是否每個大於4的偶數都能表示為兩個奇質數之和?如6=3+3,14=3+11等.第二,是否每個大於7的奇數都能表示3個奇質數之和?如9=3+3+3,15=3+5+7等.這就是著名的哥德巴赫猜想.它是數論中的一個著名問題,常被稱為數學皇冠上的明珠.
實際上第一個問題的正確解法可以推出第二個問題的正確解法,因為每個大於 7的奇數顯然可以表示為一個大於4的偶數與3的和.1937年,蘇聯數學家維諾格拉多夫利用他獨創的「三角和」方法證明了每個充分大的奇數可以表示為3個奇質數之和,基本上解決了第二個問題.但是第一個問題至今仍未解決.由於問題實在太困難了,數學家們開始研究較弱的命題:每個充分大的偶數可以表示為質因數個數分別為m、n的兩個自然數之和,簡記為「m+n」.1920年挪威數學家布龍證明了「9+9」;以後的20幾年裡,數學家們又陸續證明了「7+7」,「6+6」,「5+5」,「4+4」,「1+c」,其中c是常數.1956年中國數學家王元證明了「3+4」,隨後又證明了「3+3」,「2+3」.60年代前半期,中外數學家將命題推進到「1+3」.1966年中國數學家陳景潤證明了「1+2」,這一結果被稱為「陳氏定理」,至今仍是最好的結果.陳景潤的傑出成就使他得到廣泛贊譽,不僅僅是因為「陳氏定理」使中國在哥德巴赫猜想的證明上處於領先地位,更重要的是以陳景潤為代表的一大批中國數學家克服重重困難,不畏艱險,永攀高峰的精神將鼓舞和激勵有志青年為使中國成為21世紀世界數學大國而奮斗!
電腦對數學的影響








為了敘述方便起見,在這里我把電腦出現前的數學暫稱為經典數學,電腦出現後的數學暫稱為現代數學.
1.經典數學的研究內容與方法
(1)從書本論文到書本論文:一張紙、一支筆就可以研究數學.
(2)只做數量間的定性研究;
(3)少數人(數學家)從事的象牙塔式的研究學科;
(4)數學難題的解決程度成為衡量數學研究水平的重要方法;
(5)在數學刊物發表論文的多寡和水平成了唯一衡量標准;
(6)數學通過其它學科吸取「營養」,數學通過其它學科作用於生產,數學對生產的作用是間接的;
(7)數學是其他學科的基礎.
2.現代數學的特徵與內容
(1)通過電腦直接與生產發生關系;
·直接從生產中吸取「營養」
·直接作用於生產
·數學對生產的作用已超過其他任何一門學科
(3)數學與電腦密不可分;
·數學離不開電腦,沒有電腦就沒有現代數學
·電腦也離不開數學,沒有數學也是不會有電腦
·數學將隨著電腦的迅速發展而發展
·數學的發展又反作用於電腦,電腦的發展也離不開數學的發展
(3)軟體是聯系數學與電腦的唯一橋梁;
·沒有軟體就沒有現代數學
·沒有軟體電腦只是一個廢物
·電腦=軟體+硬體
(4)現代數學包括以下內容:
·數學模型的建立
·模型的數學分析,從數學的角度論證模型的正確性
·演算法的選取
·演算法的數學分析,從數學的角度論證模型的有效性
·軟體的編制與調試
·軟體運行的效果與數學分析(理論結果)的比較
(5)數學不僅是其他學科的基礎
·數學(與電腦結合)已成為人類認識世界和改造世界的第三種手段,並突破了另外兩種手段
——理論與實踐的局限性
·數學與電腦結合就是生產力
(6)數學已不是少數人研究的學科;
·人人都要使用電腦,電腦又離不開數學;數學已經成為人人必須掌握的知識和工具
·人人都在使用數學,人人都可從事數學研究
·數學已大大超出了經典的推理數學范疇 (摘自數學教育論壇)
現代數學家





1.電腦的發明與發展大大縮短了科學與生產的距離,尤其大大縮短了數學與生產的距離.
(1)數學已徹底走出了「象牙塔」,已成為了產品或生產工具的一部分,甚至可能是最重要的那一部分;
(2)以數學為核心的
·數值模擬
·數值模擬
·數值試驗
已成了現代科學試驗與生產過程的重要組成部分
(3)最優設計是產品設計的最高水準
·數學是優化設計的靈魂
(4)數字化革命(信息革命)是工業化後的一場新的生產大革命,數學將成為這場革命的核心內容.
2.現代數學家與經典數學家不同,他們不能只懂得推理數學,他們應掌握以下幾方面知識:
(1)他們不僅要精通一門數學分支,並且還需熟悉多門數學分支.
(2)除了數學之外,還要懂得其他專業學科,能與工程師以及其他學科的專家溝通.
(3)懂得如何建立正確的數學模型.
(4)懂得用電腦求解問題的計算方法.
(5)懂得把演算法轉換為軟體.
(6)懂得對模型和演算法做數學的推理與分析.
只有最後一項屬於經典數學,其餘五項都不是經典數學范圍,但現代數學家必須具備的知識,因此現代數學家比經典數學家應具有廣泛得多的知識.
3.現代數學家的使命
(1)經典數學家研究成果主要表現在數學論文,因此過去總以發表數學論文的多寡和水平的高低來衡量數學家的成績.
(2)但對現代數學家來說,數學論文只是他們研究成果的一部分,往往並不是他們的主要成果.
(3)對於大多數的現代數學家來說,他們的主要精力應放在如何採用數學和電腦解決科學和生產的各種問題.
(4)現代科學和技術的發展離不開電腦的發展,也離不開現代數學的發展.掌握了電腦與數學的現代數學家是一支最重要和最基礎的科學現代化隊伍.
(5)我國要實現四個現代化,要趕超世界先進水平離不開這支現代化科學家隊伍,支持基礎學科應首先支持這支隊伍的成長、發展和壯大.

B. 關於數學的小知識

1,零

在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。



2,數字系統

數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。

3,π

π是數學中最著名的數。忘記自然界中的所有其他常數也不會忘記它,π總是出現在名單中的第一個位置。如果數字也有奧斯卡獎,那麼π肯定每年都會得獎。

π或者pi,是圓周的周長和它的直徑的比值。它的值,即這兩個長度之間的比值,不取決於圓周的大小。無論圓周是大是小,π的值都是恆定不變的。π產生於圓周,但是在數學中它卻無處不在,甚至涉及那些和圓周毫不相關的地方。

4,代數

代數給了一種嶄新的解決間題的方式,一種「迴旋」的演年方法。這種「迴旋」是「反向思維」的。讓我們考慮一下這個問題,當給數字25加上17時,結果將是42。這是正向思維。這些數,需要做的只是把它們加起來。

但是,假如已經知道了答案42,並提出一個不同的問題,即現在想要知道的是什麼數和25相加得42。這里便需要用到反向思維。想要知道未知數x的值,它滿足等式25+x=42,然後,只需將42減去25便可知道答案。

5,函數

萊昂哈德·歐拉是瑞士數學家和物理學家。歐拉是第一個使用「函數」一詞來描述包含各種參數的表達式的人,例如:y = F(x),他是把微積分應用於物理學的先驅者之一。

C. 數學課外知識 字不要太多(經常會用)

幾何原本》是古希臘數學家歐幾里得的一部不朽之作,是當時整個希臘數學成果、方法、思想和精神的結晶,其內容和形式對幾何學本身和數學邏輯的發展有著巨大的影響。自它問世之日起,在長達二千多年的時間里一直盛行不衰。它歷經多次翻譯和修訂,自1482年第一個印刷本出版後,至今已有一千多種不同的版本。除了《聖經》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《聖經》所無法比擬的。

公元前7世紀之後,希臘幾何學迅猛地發展,積累了豐富的材料。希臘學者們開始對當時的數學知識作有計劃的整理,並試圖將其組成一個嚴密的知識系統。首先做出這方面嘗試的是公元前5世紀的希波克拉底(Hippocrates),其後經過了眾多數學家的修改和補充。到了公元前4世紀時,希臘學者們已經為建構數學的理論大廈打下了堅實的基礎。

歐幾里得在前人工作的基礎之上,對希臘豐富的數學成果進行了收集、整理,用命題的形式重新表述,對一些結論作了嚴格的證明。他最大的貢獻就是選擇了一系列具有重大意義的、最原始的定義和公理,並將它們嚴格地按邏輯的順序進行排列,然後在此基礎上進行演繹和證明,形成了具有公理化結構的,具有嚴密邏輯體系的《幾何原本》。

《幾何原本》的希臘原始抄本已經流失了,它的所有現代版本都是以希臘評注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據的。《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內容是闡述平面幾何、立體幾何及算術理論的系統化知識。

第一卷首先給出了一些必要的基本定義、解釋、公設和公理,還包括一些關於全等形、平行線和直線形的熟知的定理。該卷的最後兩個命題是畢達哥拉斯定理及其逆定理。這里我們想到了關於英國哲學家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:「上帝啊!這是不可能的。」他由後向前仔細閱讀第一章的每個命題的證明,直到公理和公設,他終於完全信服了。 第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數學。

第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現在的中學數學課本中找到。第四卷則討論了給定圓的某些內接和外切正多邊形的尺規作圖問題。

第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數學傑作之一。據說,捷克斯洛伐克的一位並不出名的數學家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內容。他說,這種高明的方法使他興奮無比,以致於從病痛中完全解脫出來。此後,每當他朋友生病時,他總是把這作為一劑靈丹妙葯問病人推薦。

第七、八、九卷討論的是初等數論,給出了求兩個或多個整數的最大公因子的「歐幾里得演算法」,討論了比例、幾何級數,還給出了許多關於數論的重要定理。

第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最後三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內容,絕大多數都可以在《幾何原本》中找到。

《幾何原本》按照公理化結構,運用了亞里士多德的邏輯方法,建立了第一個完整的關於幾何學的演繹知識體系。所謂公理化結構就是:選取少量的原始概念和不需證明的命題,作為定義、公設和公理,使它們成為整個體系的出發點和邏輯依據,然後運用邏輯推理證明其他命題。《幾何原本》成為了兩千多年來運用公理化方法的一個絕好典範。

誠然,正如一些現代數學家所指出的那樣,《幾何原本》存在著一些結構上的缺陷,但這絲毫無損於這部著作的崇高價值。它的影響之深遠.使得「歐幾里得」與「幾何學」幾乎成了同義語。它集中體現了希臘數學所奠定的數學思想、數學精神,是人類文化遺產中的一塊瑰寶。

D. 小學數學知識大全

良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。

現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。

E. 課外數學小知識

一、哥德巴赫猜想 1742年德國人哥德巴赫給當時住在俄國彼得堡的大數學家歐拉寫了一封信,在信中提出兩個問題:第一,是否每個大於4的偶數都能表示為兩個奇質數之和?如6=3+3,14=3+11等。第二,是否每個大於7的奇數都能表示3個奇質數之和?如9=3+3+3,15=3+5+7等。這就是著名的哥德巴赫猜想。它是數論中的一個著名問題,常被稱為數學皇冠上的明珠。
二、在很久以前印度有個叫塞薩的人,精心設計了一種游戲獻給國王,就是現在的64格國際象棋。國王對這種游戲非常滿意,決定賞賜塞薩。國王問塞薩需要什麼,塞薩指著象棋盤上的小格子說:「就按照棋盤上的格子數,在第一個小格內賞我1粒麥子,在第二個小格內賞我2粒麥子,第三個小格內賞4粒,照此下去,每一個小格內的麥子都比前一個小格內的麥子加一倍。陛下,把這樣擺滿棋盤所有64格的麥粒,都賞給我吧。」國王聽後不加思索就滿口答應了塞薩的要求。但是經過大臣們計算發現,就是把全國一年收獲的小麥都給塞薩,也遠遠不夠。賽薩的話沒有錯,他的要求的確是滿足不了的。根據計算,棋盤上六十四個格子小麥的總數將是一個十九位數,折算為重量,大約是兩千多億噸。國王擁有至高無尚的權力,卻用其無知詮釋著知識的深奧。
三、古希臘的智者是怎樣測量金字塔的高度的 先在地上立一竹竿,在有太陽的同一時刻分別測量竹竿的影子和金字塔的影子的長度,然後計算出竹竿長度與竹竿影子長度的比例,這個比例就是金字塔高度與金字塔影子的長度的比例。用這個比例和金字塔影長就可以計算出金字塔的高度。

F. 誰給我20篇數學課外知識呀,字少點呀。

數學知識 《幾何原本》 幾 何 原 本 《幾何原本》是古希臘數學家歐幾里得的一部不朽之作,是當時整個希臘數學成果、方法、思想和精神的結晶,其內容和形式對幾何學本身和數學邏輯的發展有著巨大的影響。自它問世之日起,在長達二千多年的時間里一直盛行不衰。它歷經多次翻譯和修訂,自1482年第一個印刷本出版後,至今已有一千多種不同的版本。除了《聖經》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《聖經》所無法比擬的。 公元前7世紀之後,希臘幾何學迅猛地發展,積累了豐富的材料。希臘學者們開始對當時的數學知識作有計劃的整理,並試圖將其組成一個嚴密的知識系統。首先做出這方面嘗試的是公元前5世紀的希波克拉底(Hippocrates),其後經過了眾多數學家的修改和補充。到了公元前4世紀時,希臘學者們已經為建構數學的理論大廈打下了堅實的基礎。 歐幾里得在前人工作的基礎之上,對希臘豐富的數學成果進行了收集、整理,用命題的形式重新表述,對一些結論作了嚴格的證明。他最大的貢獻就是選擇了一系列具有重大意義的、最原始的定義和公理,並將它們嚴格地按邏輯的順序進行排列,然後在此基礎上進行演繹和證明,形成了具有公理化結構的,具有嚴密邏輯體系的《幾何原本》。 《幾何原本》的希臘原始抄本已經流失了,它的所有現代版本都是以希臘評注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據的。《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內容是闡述平面幾何、立體幾何及算術理論的系統化知識。 第一卷首先給出了一些必要的基本定義、解釋、公設和公理,還包括一些關於全等形、平行線和直線形的熟知的定理。該卷的最後兩個命題是畢達哥拉斯定理及其逆定理。這里我們想到了關於英國哲學家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:「上帝啊!這是不可能的。」他由後向前仔細閱讀第一章的每個命題的證明,直到公理和公設,他終於完全信服了。 第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數學。 第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現在的中學數學課本中找到。第四卷則討論了給定圓的某些內接和外切正多邊形的尺規作圖問題。 第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數學傑作之一。據說,捷克斯洛伐克的一位並不出名的數學家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內容。他說,這種高明的方法使他興奮無比,以致於從病痛中完全解脫出來。此後,每當他朋友生病時,他總是把這作為一劑靈丹妙葯問病人推薦。 第七、八、九卷討論的是初等數論,給出了求兩個或多個整數的最大公因子的「歐幾里得演算法」,討論了比例、幾何級數,還給出了許多關於數論的重要定理。 第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最後三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內容,絕大多數都可以在《幾何原本》中找到。 《幾何原本》按照公理化結構,運用了亞里士多德的邏輯方法,建立了第一個完整的關於幾何學的演繹知識體系。所謂公理化結構就是:選取少量的原始概念和不需證明的命題,作為定義、公設和公理,使它們成為整個體系的出發點和邏輯依據,然後運用邏輯推理證明其他命題。《幾何原本》成為了兩千多年來運用公理化方法的一個絕好典範。 誠然,正如一些現代數學家所指出的那樣,《幾何原本》存在著一些結構上的缺陷,但這絲毫無損於這部著作的崇高價值。它的影響之深遠.使得「歐幾里得」與「幾何學」幾乎成了同義語。它集中體現了希臘數學所奠定的數學思想、數學精神,是人類文化遺產中的一塊瑰寶。 哥德巴赫猜想 哥 德 巴 赫 猜 想 1742年德國人哥德巴赫給當時住在俄國彼得堡的大數學家歐拉寫了一封信,在信中提出兩個問題:第一,是否每個大於4的偶數都能表示為兩個奇質數之和?如6=3+3,14=3+11等。第二,是否每個大於7的奇數都能表示3個奇質數之和?如9=3+3+3,15=3+5+7等。這就是著名的哥德巴赫猜想。它是數論中的一個著名問題,常被稱為數學皇冠上的明珠。 實際上第一個問題的正確解法可以推出第二個問題的正確解法,因為每個大於 7的奇數顯然可以表示為一個大於4的偶數與3的和。1937年,蘇聯數學家維諾格拉多夫利用他獨創的「三角和」方法證明了每個充分大的奇數可以表示為3個奇質數之和,基本上解決了第二個問題。但是第一個問題至今仍未解決。由於問題實在太困難了,數學家們開始研究較弱的命題:每個充分大的偶數可以表示為質因數個數分別為m、n的兩個自然數之和,簡記為「m+n」。1920年挪威數學家布龍證明了「9+9」;以後的20幾年裡,數學家們又陸續證明了「7+7」,「6+6」,「5+5」,「4+4」,「1+c」,其中c是常數。1956年中國數學家王元證明了「3+4」,隨後又證明了「3+3」,「2+3」。60年代前半期,中外數學家將命題推進到「1+3」。1966年中國數學家陳景潤證明了「1+2」,這一結果被稱為「陳氏定理」,至今仍是最好的結果。陳景潤的傑出成就使他得到廣泛贊譽,不僅僅是因為「陳氏定理」使中國在哥德巴赫猜想的證明上處於領先地位,更重要的是以陳景潤為代表的一大批中國數學家克服重重困難,不畏艱險,永攀高峰的精神將鼓舞和激勵有志青年為使中國成為21世紀世界數學大國而奮斗! 電腦對數學的影響 電 腦 對 數 學 的 影 響 為了敘述方便起見,在這里我把電腦出現前的數學暫稱為經典數學,電腦出現後的數學暫稱為現代數學。 1.經典數學的研究內容與方法 (1)從書本論文到書本論文:一張紙、一支筆就可以研究數學。 (2)只做數量間的定性研究; (3)少數人(數學家)從事的象牙塔式的研究學科; (4)數學難題的解決程度成為衡量數學研究水平的重要方法; (5)在數學刊物發表論文的多寡和水平成了唯一衡量標准; (6)數學通過其它學科吸取「營養」,數學通過其它學科作用於生產,數學對生產的作用是間接的; (7)數學是其他學科的基礎。 2.現代數學的特徵與內容 (1)通過電腦直接與生產發生關系; ·直接從生產中吸取「營養」 ·直接作用於生產 ·數學對生產的作用已超過其他任何一門學科 (3)數學與電腦密不可分; ·數學離不開電腦,沒有電腦就沒有現代數學 ·電腦也離不開數學,沒有數學也是不會有電腦 ·數學將隨著電腦的迅速發展而發展 ·數學的發展又反作用於電腦,電腦的發展也離不開數學的發展 (3)軟體是聯系數學與電腦的唯一橋梁; ·沒有軟體就沒有現代數學 ·沒有軟體電腦只是一個廢物 ·電腦=軟體+硬體 (4)現代數學包括以下內容: ·數學模型的建立 ·模型的數學分析,從數學的角度論證模型的正確性 ·演算法的選取 ·演算法的數學分析,從數學的角度論證模型的有效性 ·軟體的編制與調試 ·軟體運行的效果與數學分析(理論結果)的比較 (5)數學不僅是其他學科的基礎 ·數學(與電腦結合)已成為人類認識世界和改造世界的第三種手段,並突破了另外兩種手段 ——理論與實踐的局限性 ·數學與電腦結合就是生產力 (6)數學已不是少數人研究的學科; ·人人都要使用電腦,電腦又離不開數學;數學已經成為人人必須掌握的知識和工具 ·人人都在使用數學,人人都可從事數學研究 ·數學已大大超出了經典的推理數學范疇 (摘自數學教育論壇) 現代數學家 現 代 數 學 家 1.電腦的發明與發展大大縮短了科學與生產的距離,尤其大大縮短了數學與生產的距離。 (1)數學已徹底走出了「象牙塔」,已成為了產品或生產工具的一部分,甚至可能是最重要的那一部分; (2)以數學為核心的 ·數值模擬 ·數值模擬 ·數值試驗 已成了現代科學試驗與生產過程的重要組成部分 (3)最優設計是產品設計的最高水準 ·數學是優化設計的靈魂 (4)數字化革命(信息革命)是工業化後的一場新的生產大革命,數學將成為這場革命的核心內容。 2.現代數學家與經典數學家不同,他們不能只懂得推理數學,他們應掌握以下幾方面知識: (1)他們不僅要精通一門數學分支,並且還需熟悉多門數學分支。 (2)除了數學之外,還要懂得其他專業學科,能與工程師以及其他學科的專家溝通。 (3)懂得如何建立正確的數學模型。 (4)懂得用電腦求解問題的計算方法。 (5)懂得把演算法轉換為軟體。 (6)懂得對模型和演算法做數學的推理與分析。 只有最後一項屬於經典數學,其餘五項都不是經典數學范圍,但現代數學家必須具備的知識,因此現代數學家比經典數學家應具有廣泛得多的知識。 3.現代數學家的使命 (1)經典數學家研究成果主要表現在數學論文,因此過去總以發表數學論文的多寡和水平的高低來衡量數學家的成績。 (2)但對現代數學家來說,數學論文只是他們研究成果的一部分,往往並不是他們的主要成果。 (3)對於大多數的現代數學家來說,他們的主要精力應放在如何採用數學和電腦解決科學和生產的各種問題。 (4)現代科學和技術的發展離不開電腦的發展,也離不開現代數學的發展。掌握了電腦與數學的現代數學家是一支最重要和最基礎的科學現代化隊伍。 (5)我國要實現四個現代化,要趕超世界先進水平離不開這支現代化科學家隊伍,支持基礎學科應首先支持這支隊伍的成長、發展和壯大。

G. 數學小知識。

1、早在2000多年前,我們的祖先就用磁石製作了指示方向的儀器,這種儀器就是司南。

2、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。

4、「七巧板」是我國古代的一種拼板玩具,由七塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千,後來傳到國外叫做唐圖。

5、傳說早在四千五百年前,我們的祖先就用刻漏來計時。

6、中國是最早使用四捨五入法進行計算的國家。

7、歐幾里得最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,發展為歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。

8、中國南北朝時代南朝數學家、天文學家、物理學家祖沖之把圓周率數值推算到了第7位數。

9、荷蘭數學家盧道夫把圓周率推算到了第35位。

10、有「力學之父」美稱的阿基米德流傳於世的數學著作有10餘種,阿基米德曾說過:給我一個支點,我可以翹起地球。這句話告訴我們:要有勇氣去尋找這個支點,要用於尋找真理。

(7)數學課外知識摘抄大全擴展閱讀

數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

H. 數學小知識簡短有哪些

如下:

1、早在2000多年前,我們的祖先就用磁石製作了指示方向的儀器,這種儀器就是司南。

2、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。

3、「七巧板」是我國古代的一種拼板玩具,由七塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千,後來傳到國外叫做唐圖。

4、傳說早在四千五百年前,我們的祖先就用刻漏來計時。

5、中國是最早使用四捨五入法進行計算的國家。

6、歐幾里得最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,發展為歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。

I. 數學小知識50字以上,200字以下!(內容是:數學格言)

1、 數學是無窮的科學. ——外爾(Weil)
2、問題是數學的心臟.—— 哈爾默斯(P.R.Halmos )
3、只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰亡.—— 希爾伯特(Hilbert )
4、 數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (Gauss)
5、數學是科學6、數學比喻: 古希臘哲學家芝諾號稱"悖論之父",他有四個數學悖論一直傳到今天。他曾講過一句名言:"大圓圈比小圓圈掌握的知識要多一點,但因為大圓圈的圓周比小圓圈的長,所以它與外界空白的接觸面也就比小圓圈大,因此更感到知識的不足,需要努力去學習"。

7、 把數學當成一門語言學習,學會每一個術語的用法,熟悉每一個符號的意義

8、不要放過任何一道看上去很簡單的例題——他們往往並不那麼簡單,或者可以引申出很多知識點。

9、會用數學公式,並不說明你會數學。

10、如果不是天才的話,想學數學就不要想玩游戲——你以為你做到了,其實你的數學水平並沒有和你通關的能力一起變高——其實可以時刻記住:學數學是你玩「生活」這個大游戲玩的更好!
的皇後,而數論是數學的皇後 ——高斯(Gauss)