當前位置:首頁 » 基礎知識 » 圓滑的曲線用數學知識怎麼說
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

圓滑的曲線用數學知識怎麼說

發布時間: 2022-08-18 06:25:23

㈠ 實測曲線的圓滑

野外實測磁異常中包含有測量的偶然誤差和近地表不均勻磁性體產生的干擾,使實測 磁異常表現出高頻振盪或者出現鋸齒狀跳躍(這一點要比重力異常明顯)。所以對異常進 行處理時,往往先要進行圓滑,以消除這些干擾,突出主體異常。

對實測異常進行圓滑,從數學上講是函數擬合的問題。圓滑可分線性圓滑和非線性圓滑兩類。假設區域背景磁場呈線性變化,即可用線性圓滑公式;否則,用非線性圓滑 公式。

(一)線性圓滑

在異常剖面圖上,若在一定范圍內異常按照線性關系變化,則異常背景場可用線性方程來表示:

勘探地球物理教程

式中:g(x)是線性背景場值;a0,a1為待定系數,可用最小二乘方法解出。當把被圓滑 點取作坐標原點,即x=0時,g(0)=a0,於是得到

勘探地球物理教程

當m=±1時,得三點圓滑公式為

勘探地球物理教程

同理可得五點、七點、九點等圓滑公式,這里不再介紹。

(二)二次曲線圓滑公式

若異常曲線在一定范圍內,背景場值可視為二次曲線時,則在這個范圍內,背景場值可用二次曲線方程來表示。即

勘探地球物理教程

同樣,用最小二乘方法解出a0,a1,a2各系數,當把圓滑點取作坐標原點時,即 xi=0時,g(0)=a0,若取m=2,點距△x=1,則得到五點二次圓滑公式為

勘探地球物理教程

同樣可求出七點、九點等二次圓滑公式。

當測區為平面異常時,同樣可用最小二乘法求出線性與非線性平面圓滑公式,這里不再介紹。研究表明,對於不同階次,不同點數的圓滑公式,有如下差別:

(1)當點數一定,階次越低結果越圓滑;

(2)階次一定,點數越多結果越圓滑;

(3)不同階次和不同點數的結合有時可能得到相似的圓滑效果。

實際工作中,在能達到目的前提下,盡量利用較少的點參加圓滑。這樣既能節省計算工作量,又可減少周邊點的損失。

㈡ 畫數學函數圖象的平滑曲線有什麼技巧

技巧:
函數圖象的平滑曲線是曲線,就不要畫成折線。
可適度增加點,
再列對應值表、描點、連線。

其它:
可先判定函數是否為奇、偶函數、
是否具有單調性、周期性、極值點、拐點....
從而可根據上述性質畫出函數圖象的平滑曲線。

如:
若函數為奇函數,則由其圖像關於原點對稱,故只需畫出函數在某一象限的圖象,再由對稱性作出該函數的圖象,工作量可節省一半。

㈢ 光滑曲線的嚴格數學語言怎麼說

每一點都有二階導數
描述為:每一點都有切線,且切線隨曲線點的移動而連續轉動。

㈣ 數學 曲線積分的定義 為什麼是光滑曲線不光滑又怎麼了!

光滑,你可以理解為其導函數是連續的,而連續函數必可積,所以為了保證下面的計算是可以實現的,我們要求曲線光滑。

㈤ 曲線的數學名詞

按照經典的定義,從(a,b)到R3中的連續映射就是一條曲線,這相當於是說:
(1)R3中的曲線是一個一維空間的連續像,因此是一維的。
(2)R3中的曲線可以通過直線做各種扭曲得到。
(3)說參數的某個值,就是說曲線上的一個點,但是反過來不一定,因為我們可以考慮自交的曲線。
微分幾何就是利用微積分來研究幾何的學科。為了能夠應用微積分的知識,我們不能考慮一切曲線,甚至不能考慮連續曲線,因為連續不一定可微。這就要我們考慮可微曲線。但是可微曲線也是不太好的,因為可能存在某些曲線,在某點切線的方向不是確定的,這就使得我們無法從切線開始入手,這就需要我們來研究導數處處不為零的這一類曲線,我們稱它們為正則曲線。 正則曲線才是經典曲線論的主要研究對象。
曲線:任何一根連續的線條都稱為曲線。包括直線、折線、線段、圓弧等。曲線是1-2維的圖形,參考《分數維空間》。 處處轉折的曲線一般具有無窮大的長度和零的面積,這時,曲線本身就是一個大於1小於2維的空間。微分幾何學研究的主要對象之一。直觀上,曲線可看成空間質點運動的軌跡。曲線的更嚴格的定義是區間α,b)到E3中的映射r:α,b)E3。有時也把這映射的像稱為曲線。
具體地說,設Oxyz是歐氏空間E3中的笛卡兒直角坐標系,r為曲線C上點的向徑,於是有。上式稱為曲線C的參數方程,t稱為曲線C的參數,並且按照參數增加的方向自然地確定了曲線C的正向(圖1)。曲線論中常討論正則曲線,即其三個坐標函數x(t),y(t),z(t)的導數均連續且對任意t不同時為零的曲線。對於正則曲線,總可取其弧長s作為參數,它稱為自然參數或弧長參數。弧長參數s用 來定義,它表示曲線C從r(α)到r(t)之間的長度,以下還假定曲線C的坐標函數都具有三階連續導數,即曲線是C3階的。 設正則曲線C的參數方程為r=r(s),s是弧長參數,p(s)是曲線C上參數為s即向徑為r(s)的一個定點。Q(s+Δs)為C上鄰近p的點,Q沿曲線C趨近於p時,割線pQ的極限位置稱為曲線C在p點的切線。過p點與切線垂直的平面稱為曲線C在p點的法平面。曲線C在p點的切線及C上鄰近點R確定一個平面σ,σ的極限位置稱為曲線C在p點的密切平面,它在p點的法線稱為曲線C在p點的次法線,曲線C在p點的切線和次法線決定的平面稱為曲線C在p點的從切平面。p點的法線稱為曲線C在p點的主法線(圖2)。
曲線
以·表示關於弧長參數s的導數,並且設
那和b(s)=t(s)×n(s)分別是曲線C在p(s)點的切線、主法線和次法線上的單位向量,並且t(s)指向曲線C的正向。n(s)指向曲線凹入的一方。t(s)、n(s)和b(s)按此順序構成右手系,且分別稱為曲線C在p(s)點的切向量、主法向量和次法向量。{r(s),t(s),n(s),b(s)}稱為曲線C在p(s)點的弗雷內標架。曲線
C的每一點都有弗雷內標架。為研究曲線上兩個鄰近點上弗雷內標架之間的變換關系,要討論t(s)、n(s)和b(s)關於s的導向量,它們可由標架向量線性表出,這就是下述曲線論的基本公式(弗雷內公式):
式中k(s)和τ(s)分別被稱為曲線C在p(s)點的曲率和撓率。曲率
曲率
這是切向量t(s)和t(s+Δs)之間的夾角。故曲率度量了曲線上相鄰兩點的切向量的夾角關於弧長的變化率。直線的曲率恆為 0。圓周的曲率等於其半徑的倒數。當曲線C在p(s)點的曲率k≠0時,在p(s)點的主法線上沿n(s)的正向取點Q,使得pQ=1/k,在p點的密切平面上以Q為中心,1/k為半徑的圓稱為曲線C在p點的曲率圓或密切圓,Q和1/k分別稱為曲率中心和曲率半徑。密切圓是過曲線C上p(s)點和鄰近兩點的圓的極限位置。撓率
撓率
,它的絕對值
度量了曲線上鄰近兩點的次法向量之間的夾角對弧長的變化率。平面曲線是撓率恆為零的曲線。空間曲線如不是落在一平面上,則稱為撓曲線。
若p0(s0)點的曲率和撓率均不為零,取p0為原點,曲線的切線、主法線和次法線為坐標軸,在p0附近,曲線可近似地表示為:
所以曲線C在p0點鄰近的近似形狀。 曲線的弧長s、曲率k(s)和撓率τ(s)是運動的不變數。反過來,曲線的曲率和撓率也完全決定了曲線的形態。具體地說,如果給定了兩個連續函數k(s)>0和τ(s),s∈【α,b)】,則存在以k(s)和τ(s)分別為其曲率和撓率的曲線,並且這些曲線經過空間的一個運動可以互相疊合。平面曲線撓率恆為零的曲線為平面曲線。設Oxy為歐氏平面E2的笛卡兒直角坐標系,則平面曲線C的參數方程為r=r(s)=(x(s),y(s)),s為弧長參數,弗雷內公式可寫成
這里nr是單位法向量,使t(s)到nr(s)的有向角為。kr(s)稱為相對曲率,kr>0和kr<0分別表示曲線向左轉和向右轉。螺線
C為撓曲線,若其曲率和撓率具有固定比值,稱為螺線。它的特徵是切線與一固定方向作成定角。特別,如果曲率和撓率均為非零常數,那麼C是圓柱螺線,即它在圓柱面上且與直母線作固定角。它是質點繞一條直線(螺旋軸)等速旋轉且又沿這軸線方向等速移動時的軌跡。貝特朗曲線
撓曲線C若滿足λk(s)+μtau;(s)=1,其中λ、μ為常數且λ>0,稱為貝特朗曲線。這樣的曲線可與另一條曲建立一一對應關系,使在對應點的主法線重合。反之,這個性質也是曲線成為貝特朗曲線的充分條件。這樣的C中的每一條都稱為另一條的侶線。兩條貝特朗侶線在其對應點的切線作固定角。漸縮線與漸伸線
曲線C1的切線為另一條曲線C2的法線,則C1稱為C2的漸縮線或漸屈線,C2稱為C1的漸伸線或漸開線。可以證明與齒廓曲線為漸伸線的齒輪相嚙合的齒輪的齒廓曲線也是漸伸線,通常齒輪的齒廓曲線都採用圓的漸伸線。 以曲線的全部或確定的一段作為研究對象時,就得到曲線的整體的幾何性質。設曲線C的參數方程為r=r(s),s∈【α,b)】,s為弧長參數,若其始點和終點重合r(α)=r(b)),這時曲線是閉合的,稱為閉曲線。若它在這點的切向量重合,即r┡(α)=r┡(b)),且自身不再相交,則稱為簡單閉曲線。對於正則閉曲線C,把它的切向量t(s)的始點放在原點,t(s)的終點軌跡是單位球面上的一條閉曲線,它稱為曲線C的切線像或切線標形。C的切線像的長度為
等式右方是閉曲線C的曲率k(s)沿C的積分,自然就稱為曲線C的全曲率,表示。正則閉曲線的全曲率等於其切線像的長度。關於正則閉曲線的全曲率的界限有下述二定理。芬切爾定理
正則閉曲線C的全曲率,且等號僅當C為平面凸閉曲線時成立。這定理給出了正則閉曲線的全曲率的下限,白正國將此定理推廣到分段光滑的閉曲線。法里-米爾諾定理
簡單正則有結空間閉曲線的全曲。
閉曲線C的撓率τ(s)沿自身的積分
自然就稱為C的全撓率。球面上閉曲線的全撓率等於零,反之,如果非平面的曲面上任意閉曲線的全撓率都等於零,那麼這曲面為球面或其一部分。
設C為平面正則閉曲線,則當點繞C一周時,曲線C的切線像t(s)將在單位圓周上繞若干圈,這個圈數ir(以逆時針向環繞時圈數為正,順時針向時為負)稱為C的旋
轉指標,可算得 :
這里kr(s)是C的相對曲率。切線回轉定理表明:平面簡單正則閉曲線的旋轉指標ir等於±1。
將平面上一條定長的細繩首尾相接而構成一條簡單閉曲線,它把平面分成以其為公共邊界的二個部分,它所圍成的區域的面積為最大時,其形狀是圓周。有如下更精確的結論:設曲線C是長度為L的平面正則簡單閉曲線,A是C所圍區域的面積,那麼L2-4A≥0,並且等號當且僅當C是圓周時成立。上述不等式有過種種的推廣,這類問題叫做等周問題。對於平面曲線,與空間曲線論基本定理相仿,它的形態由其相對曲率kr(s)所確定,故kr(s)的極值自然是令人感興趣的。相對曲率kr(s)的逗留點,的點稱為曲線的頂點,對於凸閉曲線,即位於其上每一點的切線的一側的曲線,成立著名的四頂點定理:平面凸閉曲線至少有四個頂點,因為橢圓只有四個頂點,所以這個結論不能再改進。此外,還可以利用柯西-克羅夫頓公式來計算平面正則曲線的長度(見積分幾何學)。

㈥ 數學 請問什麼是光滑曲線

你應該是高中生吧?各個領域的光滑曲線解釋不一樣。高等數學微積分這塊的定義是:若函數f(x)在區間(a,b)內具有一階連續導數,則其圖形為一條處處有切線的曲線,且切線隨切點的移動而連續轉動,這樣的曲線稱為光滑曲線。
高中生的話可以理解為曲線每一點都存在切線。不是任意曲線都存在切線,是光滑曲線才每一點都存在切線。這涉及到曲線的定義。高中接觸到的曲線都是光滑的,所以在你看來都是任一點都是有切線的。到以後你會慢慢發現的。
切點的移動切線不停轉動。就是切點慢慢變動,切線斜率慢慢變大或者變小。比如x的平方這個函數,在0的右邊,從0開始,切線斜率為0,越往左,斜率越大,角度越大,這樣就是轉動。
如果你是大學生的話可以給你舉個例子。f(x)=x^2*sin(1/x),f(0)=0。
f處處可導,但導數在0點不連續。換句話說,曲線(x,f(x))在原點不光滑。

㈦ 光滑曲線的定義是什麼

所謂光滑就是沒有尖點、斷點,在數學上就是指「可導」(導數存在)。