❶ 為什麼要學習高等數學
數學是一門抽象性較強的學科,然而應用卻十分廣泛,具有較強的工具性。數學與生活有著緊密的聯系,生活中的許多實際問題都可以應用數學知識去解決。人類從用石子、繩結計數開始,數的概念、數學的知識就與人們的日常生活息息相關。人們用數學的工具去分析解決實際生活中遇到的一些問題,並將其概括、抽象到理論層面,然後用理論知識去分析和指導日常經濟生活中的問題。高職院校的數學知識與日常的經濟生活聯系更為密切,明確了數學方法在經濟生活中的作用,就能很好地去應用,去解決生活中的問題。
一、高等數學方法在日常經濟生活中發揮的功能
高等數學涉及的知識更加接近日常生活,數學方法在經濟生活中發揮著重大作用,主要體現在以下幾點:
1、數學方法有利於生活中對「量」的統計
數學方法從古至今就應用得十分廣泛,從繩結計數到現代的計算機統計,我們運用的都是數學方法,而且統計的數據量是越來越大,統計的效率、准確度是越來越高。如人口普查、工資核算、升學率、企業產銷量等等,都是以數學方法為工具對經濟生活中的「量」進行統計。掌握好數學方法,在面對以上這些問題時將會輕而易舉地解決。
2、數學方法有利於生活中對「算」的分析
有了科學的、准確的統計,就方便了人們運用數學方法進行計算,進行分析。通過對「量」的計算,人們可以知道不同銀行、不同利率的利息是多少,可以計算按現有條件發展,若干年後地球上人口數量,企業家可以預期一定時期內的產值、利潤等等。
3、數學方法有利於生活中做出正確的判斷
在日常生活中人們會遇到各種各樣的問題,人們往往是根據在實際中進行數據的收集、分析、統計,並結合計算得出相應的結論,同時將得出的結論與預期值進行比照,從而推斷出正確與否,最終為做出正確的決策提供參考依據。
4、數學方法有利於決策者的最終決斷
在有了正確的判斷之後,決策者可根據實際情況制定新的方案與政策,從而能夠解決生活中出現的新問題;同時,也可以對舊方案、政策或者實施意見進行修改、調整,使其向著預期的目標發展等等。如我國最近出台的計劃生育單獨二胎政策,就是專家們對我國的人口總量、人口比率、人口增長趨勢等方面大量的數據進行統計、計算、分析、判斷後做出的決策。
二、數學知識在經濟生活中的應用
數學方法在經濟生活中發揮著重要作用,因此學好高等數學十分必要。高等數學內容主要包括:函數、極限、導數等內容,這三大內容既是重點也是難點。在具體的實際生活中這些內容是如何體現出來的:
1、函數、極限知識在經濟生活中的應用
貨幣、利息是日常生活中常見的兩大問題,與人們的生活聯系緊密。所謂利息就是貨幣所有者(債權人)因貸出貨幣而從借款人(債務人)手中所得之報酬。企業家為了擴大再生產,需要融資,融資就要擔風險,要支付利息。投資者(放貸的)追求的是利益,需要收取利息,利息以「期」,即單位時間(一般以一年或一月為期)進行結算。利息分單利和復利兩種,民間放貸通常都是按單利計算,按期結算的,而且民間放貸利率都高於同期銀行利率,風險相對較大。現實社會中,血本無歸的案例比較多。而復利是將前一期之利息於前一期之末並入前一期原有本金,並以此和為下一期計算利息的新本金,這就是所謂的復利。通俗說法就是「利滾利」。這類問題就涉及了函數和極限的問題,若掌握好這兩類知識便能進行很好的計算,從而為企業做出決策提供了參考。
2、導數知識在經濟生活中的應用
在市場經濟不斷發展的今天,在現代生產力發展的驅動下,經濟學中應用數學知識進行定量分析有了較大的發展,數學中的一些分支知識如導數知識、函數極值知識、微分方程、概率知識等等已進入經濟學領域,人們利用數學知識解決經濟問題顯得越來越重要,且越來越常見。而導數是高等數學中的重要概念,是經濟分析的重要工具。運用導數可以對經濟活動中涉及到的成本、收益、利潤等邊際問題進行邊際分析、需求彈性分析和最值分析,尤其是私營企業主需要這樣的分析,為他們科學決策提供量化依據。
總之,數學與人們的生活聯系十分緊密,尤其高等數學在人類社會的經濟中發揮著重要的作用。人們的生活中無處不用到數學知識,如小到細胞的數量、人的心跳頻率、血壓高低,大到浩瀚的宇宙、行星之間的距離等等。隨著市場經濟的發展尤其是金融市場和現代企業制度的建立,數學的知識越來越多地被運用到金融、商業、財會、營銷、財稅、醫療衛生以及管理等多個領域。高職院校作為實用型人才的培養基地,應很好地培養學生利用數學工具對經濟的各個環節進行定性、定量分析的能力,使學生更好地適應社會發展的需要。
對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。
數學是研究現實世界數量關系和空間形式的學科.隨著現代科學技術和數學科學的發展,「數量關系」和「空間形式」有了越來越豐富的內涵和更加廣泛的外延.數學不僅是一種工具,而且是一種思維模式; 不僅是一種知識,而且是一種素養; 不僅是一門科學,而且是一種文化.數學教育在培養高素質科技人才中具有其獨特的、不可替代的作用。
套用費曼的一句話:
Mathematics is like sex: sure, it may give some practical results, but that's not why we do it.
❷ 學習高等數學前應該有哪些預備知識,讓自身學起來更輕松
學習高等數學,就要打下良好的學習基礎,在高中就要像數學學的特別好,然後這樣學起高等數學才比較簡單,有一些銜接的內容一定要將它學得特別好。
❸ 高等數學真的沒什麼用嗎
有用,只要是知識,就一定有用,學好數理化,走遍天下都不怕,學好高等數學真的挺好的,有用。
❹ 學習高等數學有什麼用處
學習高數的作用:
1、可以培養思維能力
2、可以應用到其他學科的學習
3、專升本或考研都需要考數學
4、可以提高思維辯證能力,提高獨立思考能力。
(4)高等數學預備知識課程重要嗎擴展閱讀
高等數學包括:
數學分析:主要包括微積分和級數理論。微積分是高等數學的基礎,應用范圍非常廣,基本上涉及到函數的領域都需要微積分的知識。級數中,傅立葉級數和傅立葉變換主要應用在信號分析領域,包括濾波、數據壓縮、電力系統的監控等,電子產品的製造離不開它。
實變函數(實分析):數學分析的加強版之一。主要應用於經濟學等注重數據分析的領域。
復變函數(復分析):數學分析加強版之二。應用很廣的一門學科,在航空力學、流體力學、固體力學、信息工程、電氣工程等領域都有廣泛的應用,所以工科學生都要學這門課的。
❺ 學習高等數學的意義在哪
《高等數學》這門課程包括極限論、微積分學、無窮級數論和微分方程初步,最主要的部分是微積分學。
微積分學研究的對象是函數,而極限則是微積分學的基礎(也是整個分析學的基礎)。 通過學習的《高等數學》這門課程要使學生獲得:
( 1 )函數、極限、連續 ;
( 2 )一元函數微積分學;
( 3 )多元函數微積分學;
( 4 )無窮級數(包括傅立葉級數);
( 5 )常微分方程。
等方面的基本概念、基本理論和基本運算技能,為學習後繼課程奠定必要的數學基礎。 通過各個教學環節培養學生的抽象概括能力、邏輯推理能力和自學能力,還要特別注意培養學生比較熟練的運算能力和綜合運用所學知識去分析問題和解決問題的能力。
❻ 大學生為什麼要學高等數學
從簡單樸素的觀點來看,學習的目的一是豐富知識,提高認識能力,二是獲取方法,解決實際問題。 學習高等數學是為了更好地為這兩個目的服務。 我希望讀者通過學習高等數學,能從追求的角度理解高等數學的起源,從哲學的角度理解高等數學的思想,從方法的角度把握高等數學的應用。