當前位置:首頁 » 基礎知識 » 四下數學第八單元知識梳理
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

四下數學第八單元知識梳理

發布時間: 2022-08-17 20:37:42

㈠ 數學四年,及,第七單元第八單元數學思維導圖該怎麼做

四年級上數學1-8單元思維導圖章節內容大致是:
四年級上數學1-8單元思維導圖章節內容大致是:第一單元思維導圖知識大數的認識(億以內的認識、讀法、寫法以及大小比較等;);第二單元思維導圖知識公頃和平方千米;第三單元思維導圖知識角的度量(關於線段、直線、射線的認識,角的認識、度量和分類和畫角);第四單元思維導圖知識三位數乘兩位數;第五單元平行四邊形和梯形思維導圖知識(另包括畫垂線、長方形以及點到直線的距離等);第六單元思維導圖知識除數是兩位數的除法(考點內容最多,重點掌握);第七單元思維導圖知識條形統計圖;第八單元思維導圖知識數學廣角問題優化(主要弄明白沏茶問題、烙餅問題和田忌賽馬這三個實際應用問題)。以上這些單元考點將以各章節內容繪製成一系列的數學思維導圖一覽表,知識點不多的內容會附些單元易錯分析題,讓同學們真正去理解透徹四年級上冊各個單元考點間的聯系,從而扎實數學理論知識

㈡ 四年級下學期數學知識點有哪些

1、小數的意義:把單位「1」平均分成10份、100份、1000份……取其中的1份或幾份,表示十分之幾、百分之幾、千分之幾……的數,叫小數。

2、分母是10、100、1000……的分數可以用小數表示,表示十分之幾的小數是一位小數、表示百分之幾的小數是兩位小數、表示千分之幾的小數是三位小數……

3、小數的組成:以小數點為界,小數由整數部分和小數部分組成。

4、小數的數位、計算單位、進率:

①小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……與整數一樣,小數每相鄰兩個計數單位之間的進率是10。

②小數部分最大的計算單位是十分之一,小數部分沒有最小的計數單位。

③小數的數位是無限的。

④在一個小數中,小數點後面含有幾個小數數位,它就是幾位小數。小數部分末尾的零也要計入其中。

5、小數的讀寫:讀小數時,從左往右,整數部分按照整數的讀法來讀(整數部分是0的讀作「零」),小數點讀作「點」,小數部分順次讀出每一個數位上的數字,即使是連續的0,也要依次讀出來。

寫小數時,也是從左往右,整數部分按照整數的寫法來寫(整數部分是零的寫作「0」),小數點點在個位的右下角,小數部分順次寫出每一個數位上的數字。

6、理解0.1與0.10的區別聯系:區別:0.1表示1個0.1、0.10表示10個0.01、意義不同。聯系:0.1=0.10兩個數大小相等。運用小數的基本性質可以不改變數的大小,改寫小數或化簡小數。

7、整數部分是0的小數叫做純小數;整數部分不為0的小數叫做帶小數。

㈢ 四年級下冊數學歸納總結

第單元:四則運算 知識點1:沒括弧算式加減左往右按順序計算 知識點2:沒括弧算式乘除左往右按順序計算 總結:同級運算左右進行計算(即加減或乘除同級) 知識點3:含加減乘除(含括弧)算式要先算乘除算加減 總結:先乘除加減 知識點4:算式括弧要先算括弧面 總結:括弧先算括弧面 知識點5:0能作除數 總結:數加0原數數減0原數數乘00,0除任何數都0,0能作除數(意義)

㈣ 數學小學四年級下冊第八單元的概念,比如說(兩端都栽......)謝謝!

兩端栽:棵數-1=間隔數;間隔數+1=棵數
兩端不栽:棵數+1=間隔數;間隔數-1=棵數
一端栽:棵數=間隔數
栽的為封閉圖形的:棵數=間隔數
例1:100米距離每隔5米栽一棵樹,兩端都栽。問共栽多少棵樹?
100÷5+1=21(棵)答:共栽21棵樹。
例2:在距離為30米的圓形花壇的一周,每隔2米栽一棵樹。問共栽多少棵樹?
30÷2=15 (棵)答:共栽15棵樹。

㈤ 最新最全人教版小學四年級數學下冊知識點總結

來上新啦,2021人教版的:

四年級下冊數學復習資料全冊1-8單元知識點歸納

第一單元 四則運算

1.加、減的意義和各部分間的關系:

(1)把兩個數合並成一個數的運算,叫做加法。

(2)相加的兩個數叫做加數。加得的數叫做和。

(3)已知兩個數的和與其中的一個加數,求另一個加數的運算,叫做減法。

(4)在減法中,已知的和叫做被減數……。減法是加法的逆運算。

(5)加法各部分間的關系:和=加數+加數加數=和-另一個加數

(6)減法各部分間的關系:差=被減數-減數

減數=被減數-差

被減數=減數+差

2.乘、除法的意義和各部分間的關系

(1)求幾個相同加數的和和的簡便運算,叫做乘法。

(2)相乘的兩個數叫做因數。乘得的數叫做積。

(3)已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。

(4)在除法中,已知的積叫做被除數……。除法是乘法的逆運算。

(5)乘法各部分間的關系:

積=因數×因數

因數=積÷另一個因數

(6)除法各部分間的關系:

商=被除數÷除數

除數=被除數÷商

被除數=商×除數

(7)有餘數的除法,

被除數=商×除數+余數

3.加法、減法、乘法、除法統稱為四則運算

4.四則混和運算的順序

(1)在沒有括弧的算式里,如果只有加、減法,或者只有乘、除法,都要按(從左往右)的順序計算;

(2)在沒有括弧的算式里,如果既有乘、除法,又有加、減法,要先算(乘、除法),後算(加、減法);(先乘除,後加減)

(3)在有括弧的算式里,要先算括弧裡面的,後算括弧外面的。

5.有關 0 的計算

①一個數和0相加,結果還得原數:a+0=a 0+a=a

②一個數減去0,結果還得這個數:a-0=a

③一個數減去它自己,結果得零:a-a=0

④一個數和0相乘,結果得0:a×0=0 ;0×a=0

⑤0除以一個非0的數,結果得0:0÷a=0;

⑥0不能做除數:a÷0=(無意義)

6.租船問題。解答租船問題的方法:先假設、再調整。

第二單元 觀察物體二

1.正確辨認從上面、前面、左面觀察到物體的形狀。

2.觀察物體有訣竅,先數看到幾個面,再看它的排列法,畫圖形時要注意,只分上下畫數量。

3.從不同位置觀察同一個物體,所看到的圖形有可能一樣,也有可能不一樣。

4.從同一個位置觀察不同的物體,所看到的圖形有可能一樣,也有可能不一樣。

5.從不同的位置觀察,才能更全面地認識一個物體。

第三單元 運算定律

……

更多詳細內容請見網路文庫:2021人教版小學四年級下冊數學全冊1-8單元知識點歸納

整理不易,如有幫助,請予採納。

㈥ 小學四年級數學下冊第八單元數學廣角具體公式

植樹問題
⑴兩端都要植樹
棵樹=間隔數+1
全=每份數×間隔數
每份數=全÷間隔數
⑵種端
棵樹=間隔數
全=間隔數×每份數
每份數=全÷間隔數

㈦ 四年級下冊數學的主要知識有哪些

人教版小學數學第八冊教學內容、目標及說明與建議: 1 四則運算 2 位置與方向 3 運算定律與簡便計算 營養午餐 4 小數的意義和性質 5 三角形 6 小數的加法和減法 7 統計 8 數學廣角 小管家 9 總復習 第一單元 四則運算 【教學目標】 1.使學生掌握含有兩級運算的運算順序,正確計算三步式題。 2.讓學生經歷探索和交流解決實際問題的過程中,感受解決問題的一些策略和方法,學會用兩三步計算的方法解決一些實際問題。 3.使學生在解決實際問題的過程中,養成認真審題、獨立思考等學習習慣。 【說明與建議】 1、本單元主要教學並梳理混合運算的順序。混合運算前面學生已經學會按從左往右的順序計算兩步式題,並且知道小括弧的作用,這里主要教學含有兩級運算的運算順序,並對所學的混合運算的順序進行整理。主要內容有:整理同級運算的順序(例1加減混合運算,例2乘除混合運算),教學並整理含兩級運算的順序(例3積商之和(差)的混合運算,兩個商(積)之和(差)的混合運算)及含有小括弧的運算順序(例5含有小括弧的三步運算試題),有關0的運算。 2、解決問題與四則混合運算順序的梳理有機結合起來。本單元在整理混合運算順序時,是結合解決問題進行的。目的是使學生在解決一個個實際問題的過程中,進一步掌握分析解決問題的策略和方法,同時體會運算順序規定的必要性,從而系統地掌握混合運算的順序。 3、將探求解題思路過程與理解運算順序有機結合起來。本單元是讓學生在經歷解決問題的過程中,感受混合運算順序規定的必要性,掌握混合運算的順序。因此,教學時,要充分利用教材提供的生動情境,放手讓學生獨立思考,自主探索,並在合作交流的基礎上形成解決問題的步驟和方法,先求什麼?用什麼方法計算?再求什麼?又用什麼方法計算?最後求什麼?用什麼方法計算?使解題的步驟與運算的順序結合起來。當學生列出綜合算式後,還要追問每步算式列出的依據及表示的實際意義,促進學生正確地概括出混合運算的運算順序。 4、幫助學生逐步掌握解決問題的步驟和策略。本單元混合運算的順序是結合解決問題進行的,其中解決問題的步驟和策略又是重點和難點之一。教學時,要注意加強數量關系的分析,在敘述解題思路時,要引導學生透過數看到量,用量的關系來描述解題思路。如,可引導學生這樣描述思路「先算出每天接待多少人,再計算6天接待多少人」。不要停留在「先用987÷3,再乘6」的描述方式上。可能開始時學生不習慣,但要逐步培養這種分析方法。 第二單元 位置和方向 【教學目標】 1. 通過解決實際問題,使學生體會確定位置在生活中的應用,了解確定位置的方法。 2. 使學生能根據方向和距離確定物體的位置,並能描述簡單的路線圖。 【說明與建議】 1、本單元共安排了4個例題:例1根據方向和距離兩個條件確定物體的位置 例2根據方向和距離,在圖上繪出物體的位置 例3體會位置關系的相對性 例4描述並繪制簡單的路線圖 2、學生在日常生活中已經積累了一些確定位置的感性經驗,並通過第一學段的學習,已經能夠根據上、下、左、右、前、後和東、南、西、北等八個方向描述物體的相對位置,而且通過第幾行、第幾列確定物體的位置已經初步認識了在平面內可以通過兩個條件確定物體的位置。本單元在此基礎上,讓學生學習根據方向和距離兩個條件確定物體的位置,並描述簡單的路線圖。使學生進一步從方位的角度認識事物,更全面的感知和體驗周圍的事物,發展空間觀念。 3、結合生活實際,讓學生了解確定位置的重要性。教材選取現實生活的素材,使學生了解所學知識的作用和價值。例如,通過「公園定向越野賽」的情境,引出如何根據方向和距離確定位置的知識,讓學生知道確定位置在生活中的應用,體會數學與日常生活的密切聯系。 4、注意創設活動情境,鼓勵學生自主探索、合作交流。 學生已經具有了從方位角度認識事物的基礎,並隨著年齡的增長,他們的語言表達能力、動手操作能力和自主探索能力有所提高。因此,在教學時要充分關注學生已有的知識基礎和生活經驗,創設大量的活動情境,為學生提供探究的空間,讓學生通過觀察、分析、獨立思考、合作交流等方式,進一步從方位的角度認識事物。在這個年級,學生的求知慾和好奇心較強,教師要充分調動學生的積極性,引導學生自主探索、獨立思考。並且由於學生的個性差異,不同學生認識事物的方法也不盡相同,教師要鼓勵學生勇於發表自己的意見,大膽地與同伴進行合作與交流。通過這樣的過程,使學生學會用不同的方式探索和思考問題,不斷提高自己的思維水平。

㈧ 四年級下冊數學復習提綱

第一單元:四則運算
1、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。(同級運算無括弧從左往右)
2、在沒有括弧的算式里,有乘、除法和加、減法,要先算乘、除法,再算加、減法。(加、減、乘、除混合運算,無括弧先乘除再加減)
3、算式里有小括弧,要先算小括弧裡面的,再算小括弧外面的。
4、加法、減法、乘法和除法統稱四則運算。
5、有關零的運算:一個數加上0還得原數,被減數等於減數差是0,一個數乘以0得0,0除以一個非0的數還得0,0不能作除數。
第二單元:位置與方向
1、畫平面圖的方法:先確定方向,再確定距離,定距離的時候可以用比例尺。
2、位置是具有相對性的,方向相反,度數相同,距離相等。如:A在B的西偏南40°的方向上,那麼B就在A的東偏北40°的方向上。
3、繪制簡單線路圖的方法:先確定出發點,再定方向、定距離進行繪制;然後選定第2 個出發點為中心點,再定方向、定距離進行繪制……以此類推。(走到哪方向標擺在哪)
4、畫平面圖的步驟:定方向、定距離、標名稱、標角度。
5、一般來說:上北、下南、左西、右東。
第三單元:運算定律和簡便計算
(一)加法運算定律
1、加法交換律:兩個數相加,交換兩個加數的位置,和不變。
用字母表示為:a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。用字母表示為:a+b+c= a +( b+c)
(二)乘法運算定律
1、乘法交換律:兩個數相乘,交換兩個因數的位置,積不變。
用字母表示為:a×b=b×a
2、乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。用字母表示為:a×b×c= a×(b×c)
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再相加。用字母表示為:(a+b)×c= a×c+b×c
乘法分配律還是用於兩個數的差與一個數相乘:(a-b)×c= a×c-b×c
(三)簡便計算
1、加法交換律與加法結合律,如63+56+37=63+37+56或56+(63+37)
2、乘法交換律與乘法結合律,如15×7×2=15×2×7或7×(15×2)
3、連減變減和(減法的性質)。用字母表示為:a-b-c=a-(b+c)
4、減和變連減,如567-(167+254)=567-167-254
5、連除變除以積(除法的性質)。用字母表示為a÷b÷c=a÷(b×c)
6、25×4=100,所以見25就想4。
(1)乘法交換律或乘法結合律,如25×17×4
(2)乘法拆分法,如25×32=25×(4×8)=25×4×8
(3)加法拆分法,如25×14=25×(10+4)=25×10+25×4
(4)乘100除以4,如36×25=36×100÷4
(5)除以100乘4,如3200÷25=3200÷100×4
7、125×8=1000,所以見125就想8。
(1)乘法交換律或乘法結合律,如125×17×8=125×8×17或
17×(125×8)
(2)乘法拆分法,如125×32=25×(4×8)=125×8×4
(3)加法拆分法,如125×18=125×(10+8)=125×10+125×8
(4)乘1000除以8,如24×125=24×1000÷8
(5)除以1000乘8,如32000÷125=32000÷1000×8
8、在乘加、乘減運算中,如果兩個乘法算式中有共同的因數,可運用乘法分配律進行 簡便計算。即:
a×c+b×c = (a+b)×c
a×c-b×c = (a-b)×c
9、省略寫×1的形式,如34×99+34=34×99+34×1=34×(99+1)
或34×101-34=34×101-34×1=34×(101-1)
10、99與101等特例,
(1)通過拆分變乘法分配律,如76×99=76×(100-1)
或76×101=76×(100+1)
(2)多加幾就減幾,如346+199=346+(200-1)=346+200-1
(3)多減幾就加幾,如346-199=346-(200-1)=346-200+1
(4)先減整再減尾數(減和變連減),如700-402=700-(400+2)=700-400-2
11、減差變一減一加,如
先加後減法:967-(421-233)=967-421+233=967+233-421
先減後加法:967-(567-235)=967-567+235
第四單元:小數的意義和性質
1、小數的計數單位為:0.1(或十分之一)、0.01(或百分之一)、0.001(或千分之一)……對應的數位分別是十分位、百分位、千分位……
2、小數的讀法:整數部分按整數的讀法來讀,小數部分要按順序讀出每一位上的數。
3、小數的寫法:整數部分按整數部分的寫法寫出,整數部分是0的就寫成0,小數部分依次寫出每個數字。
4、小數的性質:小數的末尾天上「0」或去掉「0」,小數的大小不變。
5、比較小數大小的方法:先比較整數部分;如果整數部分相同的,就比較十分位;如果十分位也相同,就比較百分位;如果百分位也相同,就比較千分位……以此類推。
6、移動小數點的方法:
(1)小數點向右移動一位,小數就擴大到原數的10倍;小數點向右移動兩位,小數就擴大到原數的100倍;小數點向右移動三位,小數就擴大到原數的1000倍。
(2) 小數點向左移動一位,小數就縮小到原數的十分之一;小數點向左移動兩位,小數就縮小到原數的百分之一;小數點向左移動三位,小數就縮小到原數的千分之一。
(3)移動小數點時應注意:小數點向左移動時,如果整數數位不夠則要在數的左邊用「0」補足並加上小數點。如:2縮小到它的十分之一就是0.2;整百、整千的數,小數點向左移動後,小數末尾的「0」要去掉,如:350縮小到它的百分之一是3.5。
7、名數的改寫步驟:(1)判斷哪個單位大,哪個單位小;(2)判斷是把大單位的數改寫成小單位的數,還是從小單位的數改寫成大單位的數;(3)確定單位間的進率是多少,再確定是用乘法還是用除法(小單位化成大單位有除法,大單位化成小單位用乘法)。
8、求一個小數的近似數,我們通常採用的方法是「四捨五入」法。(1)保留整數,表示精確到個位,應看十分位上的數是幾;(2)保留一位小數,表示精確到十分位,應看百分位上的數是幾;(3)保留兩位小數,表示精確到百分位,應看千分位上的數是幾;……以此類推。最後根據四捨五入法來確定是舍還是入。
9、將一個非整「萬」或「億」的數改寫成用「萬」或「億」作單位的數的方法:在「萬位」或「億位」的右下角點上小數點,在數的後面加上「萬」字或「億」字。注意:改寫後把末尾的「0」去掉。
第五單元:三角形
1、三角形是由三條線段圍成的圖形,它有三條邊、三個角、三個頂點。三角形的任意兩邊之和大於第三邊。三角形具有穩定性。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高。這條對邊叫做三角形的底。
3、三角形按角可以分為:銳角三角形、直角三角形、鈍角三角形。判斷一個三角形是什麼三角形,只要看三角形中最大的一個角就行了,最大角是銳角,就是銳角三角形;最大角是直角,就是直角三角形;最大角是鈍角就是鈍角三角形。
按邊可以分為:不等邊三角形、等腰三角形和等邊三角形(等邊三角形是特殊的等腰三角形)。等腰三角形:兩腰相等,兩個底角相等;等邊三角形:三個內角都相等,都等於60°。
4、三角形的內角和等於180°,不論三角形的大小和形狀。
5、最少用2個同樣的直角三角形可以拼一個長方形;最少用3個同樣的等邊三角形可以拼成一個梯形;最少用2個同樣的等邊三角形可以拼成一個平行四邊形。
第六單元:小數的加法和減法
1、計算小數加減、法時應注意:
(1)小數點要對齊,也就是相同數位要對齊。
(2)計算的時候從最右邊算起,加法時要注意哪一位相加滿十要向前一位進一,減法時要注意哪一位不夠減要向前一位退一。
(3)計算結果有「0」,一般要去掉。
2、小數加減混合運算跟整數加減混合運算的運算順序相同:
(1)在沒有括弧的算式里,只有加、減法,要按從左往右的順序計算;
(2)算式里有小括弧的,要先算小括弧里的算式,再算括弧外面的算式。
3、加法交換律、加法結合律和連減的簡便計算,在小數加、減法的簡便計算中同樣適用。
第七單元:統計
製作折線統計圖的方法:一描(點)二連(線段)三標(數據)
折線統計圖的特點:能更清楚地反映數據的變化情況
第八單元:數學廣角
解決植樹問題時,一定要先分析植樹的路線:
間隔數=全長÷株距
1、 不封閉的路線兩頭都要栽樹時,間隔數=棵數-1
已知全長與株距,則棵數=全長÷株距+1;
已知株距與棵數,則全長=株距×(棵數-1)=株距×間隔數
已知全長與棵數,則株距=全長÷(棵數-1)=全長÷間隔數
2、 不封閉的路線兩頭都不栽樹時,間隔數=棵數+1
已知全長與株距,則棵數=全長÷株距-1=間隔數-1;
已知棵數與株距,則全長=株距×間隔數=株距×(棵數+1)
已知全長與棵數,則株距=全長÷間隔數=株距×(棵數+1)
3、不封閉的路線一頭栽樹,另一頭不栽樹時,棵數=間隔數;
4、在封閉的路線植樹的情況下,棵數=間隔數。

㈨ 小學四年級下冊數學復習資料

加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
有的可能不是
第一單元乘法
1、三位數乘兩位數,所得的積不是四位數就是五位數。
2、三位數乘兩位數的計演算法則:先用兩位數的個位上的數與三位數的每一位相乘,乘得的積和個位對齊,再用兩位數十位上的數與三位數的每一位相乘,所得的積和十位對齊,最後把兩次乘得的積相加。
3、末尾有0的乘法計算方法:現把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
第二單元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
第三單元三角形
1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形具有穩定性(也就是當一個三角形的三條邊的長度確定後,這個三角形的形狀和大小都不會改變),生活中很多物體利用了這樣的特性。如:人字梁、斜拉橋、自行車車架。
4、三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
5、有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
6、有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
7、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。(銳角三角形的三條高都在三角形內;直角三角形有兩條高落在兩條直角邊上;鈍角三角形有兩條高在三角形外)。
8、把一個三角形分成兩個直角三角形就是畫它的高。
9、兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)三條邊都
相等的三角形是等邊三角形,三條邊都相等,三個角也都
相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
10、有一個角是直角的等腰三角形叫做等腰直角三角形,
它的底角等於45°,頂角等於90°。
10、求三角形的一個角=180°-另外兩角的和
11、等腰三角形的頂角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-頂角)÷2
13、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
14、多邊形的內角和=180°×(n-2){n為邊數}
第四單元混合運算
1、混合運算中:先乘除後加減,既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
第五單元平行四邊形和梯形
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。
底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行
四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許
多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、
伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
第六單元找規律
1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
第七單元運算律
1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、衍生:(a-b)×c=a×c-b×c
5、簡便運算典型例題:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八單元對稱、平移和旋轉
1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
第九單元倍數和因數
1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。如18的因數有:1、2、3、6、9、18。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。如:18的倍數有:18、36、54、72、90……(省略號非常重要)
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。(如:10、20、30、40……)
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數。(或質數)如:2、3、5、7、11、13、17、19…… 2是素數中唯一的偶數。(所以「所有的素數都是奇數」這一說法是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。如:4、6、8、9、10……
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、哥德巴赫猜想:任何大於2的偶數都是兩個素數之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
第十單元用計算器探索規律
1、積的變化規律:
①一個因數縮小幾倍,另一個因數擴大相同的倍數,積不變。
②一個因數縮小(或擴大幾倍),另一個因數不變,積也隨著縮小(或擴大)幾倍。
2、商的變化規律:
①被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
②被除數擴大(或縮小)幾倍,除數不變,商也隨之擴大(或縮小)幾倍。
③被除數不變,除數縮小幾倍(0除外),商反而擴大幾倍。
第十二單元統計
1、折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
第十三單元用字母表示數
1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4•a或4a;a×a可以寫成a•a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
附:常用數量關系
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 C=(a+b)×2
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×塊數
塊數=房間面積÷每塊面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙
四 年 級 下 學 期 數 學 復 習 提 綱

領域 主要內容 重 點 難 點 相 關 概 念

數與代數 乘法 三位數乘兩位數的筆算
三步計算解決實際問題 三位數中間有0的筆算。 三位數乘兩位數,所得的積不是四位數就是五位數。
末尾有0的乘法計算方法:先把兩個乘數不是零的部分相乘,再看兩個乘數末尾一共有幾個零,就在積的末尾加幾個零。
混合運算 三步計算混合運算的運算順序,中括弧。 明確運算順序,提高計算正確率。 先乘除後加減;既有小括弧,又有中括弧,要先算小括弧裡面的,再算中括弧里的。
運算律 應用乘法分配律進行簡便運算 乘法交換律、結合律、分配律的簡便運算。 1、乘法交換律:a×b=b×a
2、乘法結合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起來乘等於分別乘)
4、拓展:(a-b)×c=a×c-b×c
5、簡便運算典型例題:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用計算器
探索規律 積的變化規律
商的不變規律,用簡便方法計算被除數和除數末尾都有0的除法 在計算和解決實際問題中的應用。 1、積的變化規律:
一個因數縮小(或擴大幾倍),另一個因數不變,積也同時縮小(或擴大)相同的倍數。
2、商的變化規律:
被除數和除數同時擴大(或縮小)相同的倍數,(0除外),商不變。(余數會變)
倍數
因數 找10以內某個自然數的所有倍數(100以內)、找100以內某個自然數的所有因數
偶數和奇數,素數和合數的特徵,2、5和3的倍數的特徵 在掌握意義的基礎上綜合進行各類判斷,明白每類自然數的特徵。 1、4×3=12,或12÷3=4。那麼12是3和4的倍數,3和4是12的因數。(倍數和因數是相互存在的,不可以說12是倍數,或者說3是因數。只能說誰是誰的倍數,誰是誰的因數。)
2、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。
3、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
4、一個數最大的因數等於這個數最小的倍數(都是它本身)。
5、是2的倍數的數叫做偶數。(個位是0、2、4、6、8的數)
6、不是2的倍數的數叫做奇數。(個位是1、3、5、7、9的數)
7、個位上是2、4、6、8、0的數是2的倍數,個位上是0或5的數是5的倍數。
8、既是2的倍數又是5的倍數個位上一定是0。
9、一個數各位上數字的和是3的倍數,這個數就是3的倍數。(如:453各位上數字的和是4+3+5=12,因為12是3的倍數,所以453也是3的倍數。)
10、一個數只有1和它本身兩個因數的數叫素數(或質數)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素數中唯一的偶數。(所以「所有的素數都是奇數」這句話是錯誤的。)
11、一個數除了1和它本身兩個因數外,還有其它因數的數叫合數。
12、1既不是素數也不是合數,因為1的因數只有1個:1
13、100以內的素數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三個連續自然數(3、4、5),三個連續奇數(3、5、7),三個連續偶數(4、6、8)的和都是3的倍數。
找規律 進一步認識生活中的簡單搭配、簡單排列現象的規律。對幾種事物進行有序的搭配或排列。 運用規律解決一些簡單的實際問題。 1、搭配型規律:兩種事物的個數相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、媽媽、我排列照相,有幾種排法:2×3。
(2)5個球隊踢球,每兩隊踢一場,要踢多少場:4+3+2+1
用字母
表示數 用含有字母的式子表示簡單的數量、數量關系和公式,求含有字母的式子的值,化簡「ax+bx」的式子。 在具體的情境中用字母表示數量關系。 1、用字母表示數的基本規律:
如果正方形的邊長用a表示,周長用C表示,面積用S表示。那麼:正方形的周長:C=a×4 正方形的面積:S=a×a。
a×4或4×a通常可以寫成4·a或4a;a×a可以寫成a·a,也可以寫成a2,讀作「a的平方」。如果是a與1相乘,就可以直接寫成a。
2、用字母表示數量關系:小玲到商店買1枝鋼筆和4本筆記本,每枝鋼筆7元,每本筆記本a元。她一共付出(7+4a)元。
3、用數代替字母求出含有字母的式子的值。4、化簡含有字母的式子。

解決問題
的策略

用畫圖和列表的策略解決有關面積和行程的實際問題 運用畫圖解決面積的增減問題。
正確畫示意圖
合理列表
常用的數量關系:
正方形的面積=邊長×邊長 (S=a×a=a2)
正方形的周長=邊長×4 (C=a×4=4a)
長方形的面積=長×寬 (S=a×b=ab)
長方形的周長=(長+寬)×2 (C=(a+b)×2)
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工總=工效×時間 工效=工總÷時間 時間=工總÷時間
房間面積=每塊地面磚面積×地磚的塊數
地磚的塊數=房間面積÷每塊地磚的面積
相遇的路程=(甲速度+乙速度)×相遇的時間=甲速度×時間+乙速度×時間
相距的路程=(甲速度—乙速度)×時間=甲速度×時間—乙速度×時間
空間與圖形 三角形 三角形的分類、內角和、求第三個角的度數,正確測量和畫出三角形的高 三角形兩邊之和大於第三邊的應用。 1、圍成三角形的條件:較短兩條邊長度的和一定大於第三條邊。
2、從三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
3、三角形的分類:(按邊分類
三個角都是銳角的三角形是銳角三角形。(兩個內角的和大於第三個內角。)
有一個角是直角的三角形是直角三角形。(兩個內角的和等於第三個內角。兩個銳角的和是90度。兩條直角邊互為底和高。)
有一個角是鈍角的三角形是鈍角三角形。(兩個內角的和小於第三個內角。)
兩條邊相等的三角形是等腰三角形,相等的兩條邊叫做腰,另外一條邊叫做底,兩條腰的夾角叫做頂角,底和腰的兩個夾角叫做底角,它的兩個底角也相等,是軸對稱圖形,有一條對稱軸(跟底邊高正好重合。)
三條邊都相等的三角形是等邊三角形,三條邊都相等,三個角也都相等(每個角都是60°,所有等邊三角形的三個角都是60°。)
4、任意一個三角形至少有兩個銳角,都有三條高,三角形的內角和都是180度。
5、把一個三角形分成兩個直角三角形就是畫它的高。
6、有一個角是直角的等腰三角形叫做等腰直角三角形,它的底角等於45°,頂角等於90°。
7、求三角形的一個角=180°-另外兩角的和
8、等腰三角形的頂角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-頂角)÷2
10、一個三角形最大的角是60度,這個三角形一定是等邊三角形。
11、多邊形的內角和=180°×(n-2){n為邊的條數}
平行四邊形、梯形 平行四邊形、梯形的特徵,正確測量和畫出平行四邊形、梯形的高。 根據平行四邊形、梯形的底畫高。圖形之間的變換。
1、兩組對邊互相平行的四邊形叫平行四邊形,它的對邊平行且相等,對角相等。從一個頂點向對邊可以作兩種不同的高。底和高一定要對應。一個平行四邊形有無數條高。
2、用兩塊完全一樣的三角尺可以拼成一個平行四邊形。
3、平行四邊形容易變形(不穩定性)。生活中許多物體都利用了這樣的特性。如:(電動伸縮門、鐵拉門、伸降機)把平行四邊形拉成一個長方形,周長不變,面積變了。平行四邊形不是軸對稱圖形。
4、只有一組對邊平行的四邊形叫梯形。平
行的一組對邊較短的叫做梯形的上底,較長的
叫做梯形的下底,不平行的一組對邊叫做梯形
的腰,兩條平行線之間的距離叫做梯形的高
(無數條)。
5、兩條腰相等的梯形叫等腰梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。直角梯形有且只有兩個直角。
6、兩個完全一樣的梯形可以拼成一個平行四邊形。
7、正方形、長方形屬於特殊的平行四邊形。
對稱、平移
和旋轉 確定軸對稱圖形的對稱軸,畫簡單軸對稱圖形的對稱軸。根據對稱軸畫另一半
在方格紙上把簡單圖形連續平移兩次。將簡單圖形旋轉90度 畫出簡單圖形按逆時針、順時針旋轉90度後的圖形 1、畫圖形的另一半:(1)找對稱軸(2)找對應點(3)連成圖形。
2、正三邊形(等邊三角形)有3條對稱軸,正四邊形(正方形)有4條對稱軸,正五邊形有5條對稱軸,……正n變形有n條對稱軸。
3、圖形的平移,先畫平移方向,再把關鍵的點平移到指定的地方,最後連接成圖。(本學期學習兩次平移,如從左上平移到右下,先向右平移,再向下平移。)
4、圖形的旋轉,先找點,再把關鍵的邊旋轉到指定的地方,(注意方向和角度)再連線。(不管是平移還是旋轉,基本圖形不能改變。)
升和毫升 升和毫升之間的進率。升和毫升在生活中的應用。 升和毫升在生活中的應用 1、1升(L)=1000毫升(ml 、mL)
2、從裡面量長、寬、高都是1分米的正方體容器正好是1升。1升水重1千克。生活中一杯水大約250毫升;一個高壓鍋大約盛水6升;一個家用水池大約盛水30升,一個臉盆大約盛水10升;一個浴缸大約盛水400升;一個熱水瓶的容量大約是2升,一個金魚缸大約有水30升,一瓶飲料大約是400毫升,一鍋水有5升,一湯勺水有10毫升。
3、一個健康的成年人血液總量約為4000----5000毫升。義務獻血者每次獻血量一般為200毫升。
4、1毫升大約等於20滴水。
統計 統計 畫折線統計圖,對折線統計圖的數據進行分析。根據數據特點和實際需要選擇條形統計圖.或折線統計圖。 對折線統計圖的數據進行分析。 折線統計圖不僅能夠看出數量的多少,而且能夠更清楚地看出數量的增減變化情況。折線統計圖的製作步驟:①定點 ②寫數據 ③連線 ④寫日期
回答者: 61084773400 | 一級 | 2011-6-19 17:38
一、運算順序:

在沒有括弧的算式里如果只有加減法或只有乘除法有依次計算。在沒有括弧的算式里,有加減法又有乘除法,要先乘除法,後算加減法。算式里有括弧時,要先算括弧裡面的。加減乘除法統稱四則運算。一個數加0得原數任何一個數乘0得00不能做除數,0除以一個非0的數等於0。0除0得不到固定的商。5除0得不到商

二、位置與方向

1.根據方向和距離確定或者繪制物體的具體點。(比例尺、角的畫法和度量)

2.位置間的相對性。會描述兩個物體間相互位置關系。(觀測點的確定)

B在A的東偏北30度2000米處;

A在B的西偏南30度200米處。

3.簡單路線圖的繪制。

三、運算定律及簡便運算:

1.加法運算定律:

加法交換律:兩個數相加,交換加數得位置,和不變。a+b=b+a
加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加 再加上第一個數 ,和不變。(a+b)+c=a+(b+c) 加法這兩個定律往往結合在一起使用。如:165+93+35=93+(165+35) 依據是什麼?
. 2、 連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和 。 a-b-c=a-(b+c)

3、乘法運算定律:

乘法交換律: 兩個數相乘,交換因數的位置,積不變。bXa=aXb
乘法結合律: 三個數相乘,可以先把前兩個數相乘,再乘第三個數 ,也可以先把後兩個數相乘,再乘以第一個數,積不變。 (axb)xc=ax(bxc) 乘法這兩個定律往往結合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)xc=axc+bxc

4.連除的性質:一個數連續除以兩個數,等於除以這兩個數的積。 a除b除c=a除{b乘c}

a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小數表示

小數的單位是十分之_百分之一.千分之一

每相鄰的兩個計數單位的進率是+整數整讀.小數依次讀出每1個整數整寫小數依次目小數末尾瞼0可去掉

小數擴大十倍,有向右移動一位擴大100倍向右移動兩位一千倍向右移動一位。。。

小數向左移一位縮小+倍向左移動兩位縮小一百倍向左移動三位縮小一千倍........

保留-位小數精確到+分位2位小數精確到百分位3位小數精確到千分位.....。

三條邊圍成的圖形叫三角形

三角的1個角到它對邊作-條直線這條直線叫三角形的高對邊叫三角形的底

特性穩定任意兩大於笫三邊

角的分類;大小分銳角直角鈍角長短分三邊不等等腰三角形總等180度兩個三角形能拼平行四邊形

把小數點對齊計算叫小數加減法在數據描出各點用線連起來間隔數=總長除間隔長

兩端教植棵數等於間隔+1隻植一端棵數=間隔

都不植棵數=間隔--

封閉棵數=間隔