Ⅰ 八年級下學期數學知識點
第1章 二次根式
二次根式屬於「數與代數」領域的內容,它是在學生學習了平方根、立方根等內容的基礎上進行的,是對七年級上冊「實數」「代數式」等內容的延伸和補充。二次根式的運算以整式的運算為基礎,在進行二次根式的有關運算時,所使用的運演算法則與整式、分式的相關法則類似;在進行二次根式的加減時,所採用的方法與合並同類項類似;在進行二次根式的乘除時,所使用的法則和公式與整式的乘法運演算法則及乘法公式類似。這些都說明了前後知識之間的內在聯系。
本章的主要內容有二次根式,二次根式的性質,二次根式的運算(根號內不含字母、不含分母有理化)。
一、教科書內容和教學目標
本章的教學要求。
(1)了解二次根式的概念,了解簡單二次根式的字母取值范圍;
(2)了解二次根式的性質;
(3)了解二次根式的加、減、乘、除的運演算法則;
(4)會用二次根式的性質和運演算法則進行有關實數的簡單四則運算(不要求分母有理化)。
本章教材分析。
課本在回顧算術平方根的基礎上,通過「合作學習」的三個問題引出二次根式的概念,並說明以前學的數的算術平方根也叫做二次根式。在例題和練習的安排上,著重體現三個方面的要求:一是求二次根式中字母的取值范圍;二是求二次根式的值;三是用二次根式表示有關的問題。
對於二次根式的性質,課本利用第4頁圖1-2給出的。該圖的含義是如果正方形的面積為,那麼這個正方形的邊長就是;反之,如果正方形的邊長為,那麼這個正方形的面積就是,因此就有。從而得出二次根式的第一個性質。至於第二個性質,可以通過學生的計算來發現,所以課本安排了一個「合作學習」,讓學生自己去發現和歸納。該節第一課時的重點在於對這兩個性質的理解和運用,例題和練習的設計就圍繞這兩個性質展開。第二課時是學習二次根式的另外兩個性質,課本安排兩組練習,意在讓學生通過自己的嘗試,與同學的合作交流來發現這兩個性質。通過兩個例題和一組練習,使學生知道運用二次根式的性質,可以簡化實數的運算,也可以對結果是二次根式的式子進行化簡。課本第9頁的「探究活動」既是對二次根式的運用,更在於培養學生的一種探究能力,觀察、發現、歸納等能力。
第1.3節二次根式的運算,包含了二次根式的加、減、乘、除四種運算以及簡單應用,課本安排了3個課時,逐步推進,逐漸綜合。第一課時側重於兩個(相當於兩個單項式)二次根式的乘除,其法則是從二次根式的性質得到的,比較自然。例1是對兩個運演算法則的直接運用,讓學生有一個對法則的熟悉和熟練過程;例2是一個結合實際問題的運用,其中有勾股定理和三角形的面積計算。第二課時是二次根式的加減和乘除混合運算,出現了類似單項式乘以多項式、多項式乘以多項式(包括乘法公式、乘方)、多項式除以單項式的運算。課本中沒有出現「同類二次根式」的概念,只是提到「類似於合並同類項」「相同二次根式的項」,這種類比的方法,學生是能夠理解的,也能夠與整式一樣進行運算。第三課時是二次根式運算的應用。例6的數字看上去比較復雜,其目的是為了二次根式的運算的應用;例7綜合運用了直角三角形的有關知識、圖形的分割、面積的計算等,其解答過程較長,也是對二次根式知識的綜合運用。
二、本章編寫特點
注重學生的觀察、分析、歸納、探究等能力的培養。
在本章知識的呈現方式上,課本比較突出地體現了「問題情境——數學活動——概括——鞏固、應用和拓展」的敘述模式,這種意圖大多通過「合作學習」 來完成。「合作學習」為學生創設了從事觀察、猜測、驗證交流等數學活動的機會。如第5頁先讓學生計算三組與的具體數值,再議一議與的關系,然後得出二次根式的性質「=」。二次根式的其他幾個性質,課本中也是採用類似的方法。在學習了二次根式的有關性質後,課本又設計了一個「探究活動」,通過化簡有關的二次根式,讓學生自己去發現規律、表示規律、驗證規律,並與同伴交流。所有這些都是教材編寫的一種導向,以引起教與學方式上的一些的改變。
注重數學知識與現實生活的聯系。
教材力求克服傳統觀念上學習二次根式的枯燥性,避免大量純式子的化簡或計算,適當穿插實際應用或賦予式子一些實際意義。無論是學習二次根式的概念,還是學習二次根式的性質和運算,都盡可能把所學的知識與現實生活相聯系,重視運用所學知識解決實際問題能力的培養。如二次根式概念的學習,課本通過三個實際問題來引入,其目的就是關注概念的實際背景與形成過程,克服機械記憶概念的學習方式。又如,課本第3頁,用二次根式表示輪船航行的的距離,第11頁求路標的面積,第21頁花草的種植面積問題等。特別是在二次根式的運算中,專門安排了一節內容學習二次根式運算的應用,例6選取的背景是學生熟悉的滑梯,例7選取的背景是學生感興趣的剪紙條,以及作業中的堤壩、快艇問題等等。
充分利用圖形,使代數與幾何有機結合。
對於數與代數的內容,教材重視有關內容的幾何背景,運用幾何直觀幫助學生理解、解決有關代數問題,是教材的一個編寫特點,也是對教學的一種導向。本章中,如二次根式與直角三角形有關邊的計算密切相關,課本在這方面選取了一定量的問題,既豐富了勾股定理的運用,又學習了二次根式的計算。又如二次根式的引入,課本以圖形作為條件,讓學生通過計算給出二次根式的概念;在學習二次根式的性質時,課本通過讓學生讀圖1-2,從正反兩方面來理解其含義,得出二次根式的性質。例題中結合圖形示意,幫助學生理解問題,解決問題;作業或課本練習中設計一些圖形中有關線段長度的計算;通過方格、直角坐標系來畫三角形、確定點的位置等等。課本在安排二次根式的運算在日常生活和生產實際中的應用時,所選取的問題也在於體現學生所學知識之間的聯系,感受所學知識的整體性,不斷豐富學生解決問題的策略,提高解決問題的能力。
三、教學建議
注意用好節前語。
本章的節前語不多,但都緊密結合本節學習的內容,提出一個具體的問題。教學中可以利用它們來創設問題情境,引入課題。如第1.1節「排球網的高AD為2.43米,CB為米,你能用代數式表示AC的長嗎?」短短的幾句話,既是一個學生熟悉的問題情境,又是一個看似熟悉但又具有一定的挑戰懷,與數學學習相聯系的問題,教師可以由此提出一個與本節課學習有關的問題。教學中不應忽視這種作用。
注意把握教學難度。
與以往的教材相比,二次根式已降低了要求。如運用二次根式的性質將二次根式化簡,只要求簡單的,不要出現過於復雜的式子,並且明確根號內不含字母。對二次根式的四則運算,也僅局限於簡單的,根號內不含字母,教學中不需補充超出課本題目要求的問題。當然對不同層次的學生,應該體現一定的彈性。課本第15頁的作業題中的第7,8題,還可以藉助於計算器進行計算。
充分運用類比的方法。
二次根式的運算以整式的運算為基礎,其法則、公式都與整式的類似,特別是二次根式的加減,課本沒有提出同類二次根式的概念,完全參照合並同類項的方法;二次根式的乘除、乘方運算類似於整式的乘除、乘方運算。因此對於二次根式的四則運算的教學應充分運用類比的方法,讓學生理解其算理和演算法,提高運算能力。
第2章 一元二次方程
一、教科書內容和課程學習目標
(一)教科書內容
本章包括三節:
2.1 一元二次方程;
2.2一元二次方程的解法;
2.3一元二次方程的應用。
其中2.1節是全章的基礎部分,2.2節是全章的重點內容,2.3節是知識應用和引申的內容。另外,閱讀材料介紹了一元二次方程的發展,讓學生了解數學的發展史。
(二)本章的知識結構
(三)課程目標
(1)了解一元二次方程的概念,會用直接開平方法解形如(b≥0)的方程;
(2)理解配方法,會用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程,使學生能夠根據方程的特徵,靈活運用一元二次方程的各種解法求方程的根。
(3)體驗用觀察法、畫圖或計算器等手段估計方程的解的過程。
(4)能夠根據具體問題中的數量關系,能夠列出一元二程方程解應用題,能夠發現、提出日常生活、生產或其他學科中可利用一元二次方程來解決的實際問題,並正確地用語言表達問題及解決過程。體會方程是刻畫現實世界的一個有效的數學模型。
(5)結合教學內容進一步培養學生邏輯思維能力,對學生進行辯證唯物主義觀點的教育,通過一元二次方程的教學,使學生進一步獲得對事物可以轉化的認識。
(四)課時安排
2.1 一元二次方程…………………………………………………………2課時
其中:一元二次方程的概念……………………1課時
因式分解法解一元二次方程……………1課時
2.2一元二次方程的解法………………………………………………4課時
其中:開方法、配方法………………………2課時
公式法…………………………………2課時
2.3一元二次方程的應用………………………………………………2課時
小結、目標與評定………………………………………………………2課時
二、編寫指導思想與特點
方程教學在中學數學教學中佔有很大的比例,一元二次方程在初中代數中佔有重要地位。一方面,一元二次方程可以看成是前面所學過的有關知識的綜合運用,如有理數、實數的概念和整式、分式、開平方等的運算,一元一次方程、一元一次方程組解法等知識,在本章都有應用。從數學角度看,這一章的學習有一定難度,如果前面某個環節薄弱或知識點有問題,就會給本章的學習帶來困難,因此,這一章的教學是對以前所學的有關知識的檢驗,又是一次復習與鞏固。當然,一元二次方程知識也是前面所學知識的繼續和發展,尤其是方程方面知識的深入和發展。
本章的主要內容是一元二次方程的解法和應用,課本首先引入一元二次方程的概念,從實數的性質,將分解成為兩個一次因式相乘積為零的一元二次方程轉化為兩個一元一次方程入手,介紹了利用因式分解法解一元二次方程的方法,體現了數學的轉化思想。接著課本首先從數的開平方的知識出發,直接講開平方法,然後依次介紹了配方法和公式法。在講述公式法的同時,課本特別給出了利用計算器解一元二次方程的解法示例,以揭示技術發展給數學學習帶來的影響,這也是一種新的嘗試。同時,以建立數學模型為主要著力點介紹了一元二次方程的應用,並在例題的設置上充分考慮了圖表、立體圖形、物體運動和經濟活動中的問題背景,力圖使學生在現實的環境中學習數學。
這一章是全書乃至整個初中代數的一個重點內容。因為這一部分內容既是對以前所學內容的總結、鞏固和提高,又是以後學習的知識基礎。因此這一章可以說是起到了承上啟下的作用。高中階段的指數方程、對數方程及三角方程,無非就是指數、對數、三角函數的有關知識與一元一次方程、一元二次方程的綜合而已。初中代數中的不少主要技能、解題方法以及一些常用的數學思想方法,在本章都有所體現。例如,換元法、因式分解法、配方法等。另外,從具體到抽象的概括能力、邏輯推理能力等等在本章也有體現。可以說,無論從基礎知識還是基本技能看,這一章都佔有重要的地位。在本章的內容中,應以一元二次方程的解法,特別是公式法作為重點。
三、教材體現的數學思想方法
本章從內容上看是初中代數的重點,從數學思想方法方面來看,也是初中數學中比較全面體現的一章。
1.方程的思想
方程本身就提供了一種重要的數學思想方法,這一點在一元二次方程中體現的更為充分。學習方程不僅為進一步學習其他知識打下基礎,不僅可用於解決一些實際問題,而且在更廣泛的意義上講,通過方程可以溝通已知與未知之間的聯系,從而由解方程就可以使問題得以解決,通常稱之為方程思想。方程思想作為一種數學思想,在數學發展史上有重要作用,對求解數學問題來說也有重要的意義。
2.公式解法
一元二次方程的公式解法在數學思想方法上有重要意義。首先,公式法是人們所知的多次方程的第一種公式(根式)解,它為以後進行公式解的研究開辟了道路,並且是引起近似代數的起源問題之一,在數學的學習中也有重要意義;其次,公式法解體現了數學中的運算元的思想,將數學問題進行抽象化、符號化、程序化,這是數學發展的重要的途徑。
3.分類討論的數學思想
一元二次方程求根公式中,涉及開方問題,即對要實施開平方,而前面已經學過負數沒有平方根。因此的狀態就決定了一元二次方程根的狀態。必須對的符號進行討論。分類討論的數學思想是一種極為重要的數學思想方法,教材中對Δ=的三種分類討論隱含在課堂教學之中,通過「想一想」讓學生自然地得到結論,降低由於數學思想上的要求所帶來的學習上的難度,這是一種合理的處理方法。實際上,判別式的討論是不解方程而對方程的根進行定性研究的重要指標。在研究二次函數的圖象和性質等方面有重要意義,在研究二次曲線的問題時有重要地位。判別式實質上是利用方程的系數研究方程的性質,是一種以局部研究探求具體性質的方法。找一種關鍵性的數量關系去定性地研究一類對象,也是一種常見的數學思想方法。
4.轉化(化歸)的數學思想
在本章中更突出地表示出「轉化」的思想方法。如利用因式分解法解一元二次方程就是將一元二次方程轉化為兩個一元一次方程。嚴格地說,轉化的思想是數學中認識和掌握新知識的重要途徑,掌握這種方法,可以提高學生的數學能力,拓展學生數學知識。如換元法就是一種很重要的轉化思想,這在本章也有不少的體現。
四、教材處理
關於教材處理,按教材內容的安排及課程標準的要求,分三部分進行分析:
1.一元二次方程
本節包括一元二次方程的概念、因式分解法解一元二次方程,這一單元是本章的基礎,教材兩個問題中引入了一元二次方程的概念,一個問題是學生所熟悉的正方形和長方形的面積,另一個問題是從報紙上公布的統計數據,教學的重點是對方程的一般形式的認識和對方程解的理解,在此基礎上,引入用因式分解法求一元二次方程解的方法,將這種解安排在此處,其目的是為了加強學生對學習方程目的的理解,並為後續通過轉化求方程解奠定思想基礎。
2.一元二次方程的解法
本節是本章的核心內容,主要是一元二次方程的各種解法。其中的一元二次方程的配方法和應用一元二次方程知識理解應用問題是重點,而這兩個重點又是教學過程中的難點。一元二次方程的解法,尤其是公式法是學好本章的關鍵。因此,本節又是全章的重點,是學好本章的基礎。
一元二次方程的解法,課本介紹了四種,即直接開平方法、配方法、公式法及因式分解法。
直接開平方法適用於(b≥0)模式的方程。實際上,給出的一般方程只要存在實根,就可以用配方法轉化為的形式。例如,課本中將方程轉化為,因此配方法是直接開方法的延伸,而直接開平方法是配方法的基礎。
在配方法解一元二次方程的基礎上,很自然地推出一元二次方程的求根公式,實際上就是對一般形式(a≠0)的一元二次方程實施配方法的結果。
對於三種解法,公式法可以是一種「萬能」方法,只要△=≥0,將系數a,b,c代入公式即可求解。在教學中注意一元二次方程中的a≠0的條件。在配方時應強調方程兩邊同時加上「一次項系數之半的平方」或在左端加上「一次項系數之半的平方」再減去「一次項系數之半的平方」,實質上是方程的一種同解變形,這是必須反復訓練方可達到學生熟練進行配方的目的,它也是推導求根公式的基礎。
對△=的討論,首先要滲透分類討論的思想,另外,對△==0的情況,一定要強調有兩個相等的實根:這與方程根的理論一致,學生開始會認識只有一根,要反復強調,以糾正這種不正確的或說是不嚴密的結論。對△=<0的情況,不能說成方程無解,而應強調方程無實數根或在實數范圍內無解,強調數域是為今後在高中討論有復根的情況埋下伏筆。理論上的證明見教師用書。
關於一元二次方程根與系數的關系,實際上,求根公式就體現了根與系數的關系,由於課程標准中沒有涉及,但這部分內容對於今後的學習是很重要的,在教學中可以作為探索性學習的內容,讓學生自己進行探索並得出結論。
3.一元二次方程的應用
列方程解應用問題,前面一元一次方程的應用已學習過相關的知識,但是列一元二次方程解應用題仍然是難點,其原因是數量關系比較復雜且隱蔽;應用題所反映的實際背景比較復雜而學生又不太熟悉;所列方程也逐步復雜。主觀上學生一開始受算術解法思維的定勢影響,缺乏廣泛的社會經濟生產和生活以及相關學科方面的知識,理解文字語言和數學語言等方面的能力較差。
對於求解應用題,若從思想方法角度來看,列方程解應用題屬於數學模型法,其中方程應用題求解,大體上都是這樣六個步驟:①審題,理解題意,明確題中涉及幾個量,有幾個是已知量,有幾個是未知量,它們之間有什麼關系等等;②設元,根據題目要求,選擇合適的未知數,又分為直接設元法、間接設元法。同時還要考慮設幾個未知數為宜;③列式,分析題目中量與量的關系,關鍵是找出題目中的相等關系,這時,要注意挖掘題目中的那些隱蔽的相等關系,有時,又要輔之使用圖示法、列表法等一些直觀手段;④求解;⑤檢驗,既要檢驗得到的解是否符合原方程或原方程組,又要檢驗所得的解對實際問題是否有意義;⑥作答,寫出正確合理的答案。在教學中可以結合問題解決的策略,讓學生主動參與,自主建構和合作學習,體會數學建模的基本思想與方法。
(金克勤)
第3章 頻數及其分布
統計學是搜集數據、分析數據,並根據它獲得總體信息的科學.本套教材在七年級上冊安排了 「數據與圖表」,著重介紹了數據的收集、整理的初步方法;在八年級上冊安排了「樣本與數據分析初步」,通過對數據集中程度和離散程度的統計量的計算,初步了解了如何對數據的基本狀態進行分析.為了進一步分析、處理數據,供決策時參考,有時我們還要了解數據的分布情況,找出新的特徵數.「頻數及其分布」這一章就是解決了這一問題.「頻數及其分布」這部分內容在原總指浙江版義務教材中也有,但只是作為概率統計初步中的一小節.考慮到頻數、頻率、頻數直方圖、頻數折線圖與日常生活、自然、社會和科學技術領域的密切聯系,《數學課程標准》增加了這塊內容的份量.本套教材將這塊內容獨立設章的目的,一方面可用足夠的篇幅來更清楚、更詳細闡述,也是為每冊循序漸進地學習概率與統計知識所作的精心安排.
本章教學時間約需7課時 ,具體安排如下:
3.1 頻數和頻率 1課時
3.2 頻數分布 1課時
3.3 頻數的應用 3課時
復習、評估1課時,機動使用1課時,合計7課時.
一、教科書內容和課程教學目標
(1)本章知識結構框圖如下:
(2)本章教學目標如下:
目標類別
目標層次
知識點及相關技能 知識技能目標 過程性目標
了解 理解 掌握 靈活運用 經歷(感受) 體驗(體會) 探索
頻
數
及
其
分
布 極差 √ √
頻數的概念 √ √
頻數分布表 √ √
頻率的概念 √ √
頻數分布的意義和作用 √ √
頻數分布直方圖 √ √
頻數分布折線圖 √ √
根據頻數分布直方圖估計平均數 √ √
(3)本章教學要求
① 通過實例,理解頻數、頻率的概念,了解頻數分布的意義和作用.
② 會計算極差,會對數據合理分組,並求出每一組的頻數、頻率,列出頻數分布表.
③ 會畫頻數分布直方圖和頻數分布折線圖,能根據頻數分布直方圖估計平均數,能根據數據處理的結果,作出合理的判斷和預測,並在這一過程中體會統計對決策的作用.
④ 通過畫直方圖、折線圖養成學生耐心細致的工作作風,實事求是的工作態度,善於觀察、分析問題的能力.
二、本章編寫特點
以《數學課程標准》為本,刪繁就簡、突出重要內容
畫頻數分布直方圖不採用傳統按部就班的逐步介紹的方法,步驟多、方法繁將會影響這個年齡段的學生學習興趣.事實上,如3.1節做一做,「下面給出以0.4 kg為組距,取2.75~3.15、3.15~3.55……為端點」;對連續型、離散型數據的不同處理等,裡面還有許多道理.不在繁瑣的具體枝節上糾纏,突出重要概念,讓學生體驗頻數、頻率的真實含義,理解頻數、頻率分布的意義和作用才是教學的真正目的,也是本章教材編寫的特點之一.
精心選擇實例,貼近學生生活,引起學生興趣
頻數、頻率本身就是處理實際問題,從實際中來,在解決實際問題的過程中引入概念.教材精心挑選、引入大量學生熟悉的例子,創設學生熟悉的情境,引起學生興趣,使學生能產生解決它的慾望.掃除一定程度上因為敘述事例的冗長而引起學生反感.如血型分布、運動鞋鞋號的選擇、學科成績、午餐等候時間、礦泉水質量等等都是學生身邊的事,學生熟悉且親切.同時也培養了學生從統計的角度思考與數據信息有關的問題,通過收集、分析數據的過程能初步作出合理的決策,提高學生處理問題、決策問題的能力.
重實踐操作,設計一定量的數學活動,在交流中增強數學應用意識
本章內容安排了一定量的實習操作性的活動,如「八年級男生、女生身高和所穿運動鞋的分布」「八年級學生跳繩次數的頻數分布」「八年級男生、女生體重數據的分布」「商場不同價格的彩電銷售情況」等,這些活動都需要學生分小組合作,事前精心設計策劃,調查廣泛接觸不太熟悉的人和事,希望學生通過這些活動認識現實世界中蘊含的大量的數學信息,數學與現實世界有著緊密聯系,增強學生的數學應用意識,也培養學生實際工作能力,從中獲得克服困難經歷或者體會獲得成功的喜悅.
三、教學建議
(1) 畫頻數分布直方圖的一般步驟是:①計算極差;②決定組數與組距.一般當數據在100個以內時,按照數據多少,常分為5~12組;組距是指每個小組的兩個端點之間的「距離」 , = 組距;③決定分點,為了避免有些數據本身落在分點上,常常將分點多取一位小數;④列表、劃記;⑤畫頻數分布直方圖.教師根據實際情況在講解中靈活應用,但不要完全在黑板上重復以上步驟,這樣違背了教材編寫的初衷.
(2) 利用頻數分布表、頻數直方圖、頻數折線圖來分析數據的一些特徵是教學的重點之一,教學中應該充分發揮學生的積極性,讓學生仔細地觀察、大膽地推測、合理地驗證.「統一訂購運動服、運動鞋,應注意哪些問題?」「校方安排學生多長的午餐時間為宜?」「估計魚塘中有多少條魚」「分析男生、女生游泳項目成績差異」等等,不像原來數學題有唯一標准答案,應鼓勵學生各抒已見,最後在充分討論的基礎上形成比較一致的意見.這是與人交流、勇於探索、比較清晰表達自己觀點的重要方式,也是新課程數學教學的一個重要方面,教師可視具體情況在本章教學中盡量體現.
(3)計算繁瑣,聯系實際緊密是本章的主要特點.除了課本提供的範例外,教學中教師可根據實際情況進行適當補充.同時教師還應該充分利用多媒體預先製作好一些教具,不要使課堂上寶貴的時間浪費在抄寫、繪圖上面.
四、本章教學中應注意的問題
(1)數據有「連續型」與「離散型」兩種,對離散型數據,如課本第51頁的血型分組一般比較容易,對離散型數據分組不唯一,僅是根據經驗,不同的分組一般得到的結論也有所差別,但只要合理均認為正確.
(2)進行實踐活動時,要注意有些問題可能涉及學生的個人隱私,如較胖的女同學不願意論及自己的體重,她認為公開自己的體重是侵犯了個人隱私權;一分鍾跳繩次數比較少的同學也可能覺得沒面子而出現一些不愉快事情.針對這些情況任課教師應有充分的思想准備,採取迴避或選擇一些合適的同學或選擇另外適當的數據作調查對象等辦法.我們的目的是通過一些實踐活動在交流中培養互相合作的精神,與人合作中體會愉快,用數學知識解決實際問題中,增強應用數學的自信心.不要因為個別特殊原因干擾整個教學計劃.
(3)直方圖的縱坐標與橫坐標一般來說有不同的單位,每個單位的具體長度應在比較中進行選擇.最終的要求是畫出來的圖形比較美觀,能清楚反映分布情況、及變化趨勢.課本所採用畫折線 的辦法就是避免圖形畫在極端的位置.在不影響整個圖形所反映基本特徵的情況下,使頻數直方圖或頻數折線圖更加美觀.也可以採用將學生所畫的圖比較展覽的辦法,讓學生在交流中取長補短,互相吸收別人好的經驗,來完善自己畫圖技能.
(王利明)
命題與證明
Ⅱ 初中數學知識點有哪些呢
初中數學知識點如下:
1、第1章《有理數》主要知識點有:有理數概念、相反數、絕對值、有理數加減乘除運算、科學計數法。
2、第2章《整式的加減》主要知識點:單項式、多項式、整式、同類項、去括弧法則、整式的加減運算。
3、第3章《一元一次方程》主要知識點:方程及一元一次方程概念、等式的性質、解一元一次方程、應用一元一次方程解決實際問題。
4、第4章《幾何圖形初步》主要知識點:直線、射線、線段,角的有關概念、角的單位及角度制,餘角、補角等。
5、第5章《相交線與平行線》主要知識點:鄰補角、對頂角,垂線及其性質,同位角、內錯角、同旁內角,平行線的判定與性質,命題、定理、證明。
6、第6章《實數》主要知識點:算數平方根、平方根、立方根,無理數、實數概念,實數的性質及運算。
7、第7章《平面直角坐標系》主要知識點:有序數對,點的坐標,用坐標表示平移。
8、第8章《二元一次方程組》主要知識點:二元一次方程及解的定義,二元一次方程組的定義及其解,代入消元和加減消元解二元一次方程組,實際問題與二元一次方程組。
Ⅲ 初二下冊數學知識點
初二下冊數學主要學習二次公式、勾股定理、平行四邊形、一次函數、數據的分析五個章節,涉及最簡二次根式、同類二次根式、二次根式的性質及運算、勾股定理和逆定理、直角三角形的性質及判定、命題、定理、證明等知識點。
第十六章分式
一、定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子叫做分式。
二、分式基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
三、分式計算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒置後,與被除式相乘。
分式乘方:分式乘方要把分子、分母分別乘方。
四、整數指數冪:較小數的科學記數法;
五、分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。(這個解是增根,原方程無解)。
第十七章反比例函數
一、形如y=(k為常數,k≠0)的函數稱為反比例函數;
二、反比例函數的圖像屬於雙曲線;
三、性質:當k>0時,雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時,雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
第十八章勾股定理
一、勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼
二、勾股定理逆定理:如果三角形三邊長a,b,c滿足,那麼這個三角形是直角三角形。
三、經過證明被確認正確的命題叫做定理。
四、我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章四邊形
一、平行四邊形:
1、定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2、性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3、判定:
(1)兩組對邊分別相等的四邊形是平行四邊形;
(2)兩組對角分別相等的四邊形是平行四邊形;
(3)對角線互相平分的四邊形是平行四邊形;
(4)一組對邊平行且相等的四邊形是平行四邊形。
(5)有兩組對邊分別平行的四邊形叫做平行四邊形。(定義)
4、三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
二、矩形:
1、定義:有一個角是直角的平行四邊形叫做矩形。
2、性質:矩形的四個角都是直角;矩形的對角線平分且相等。
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形。(定義)
(2)對角線相等的平行四邊形是矩形。
(3)有三個角是直角的四邊形是矩形。
4、直角三角形斜邊上的中線等於斜邊的一半。
三、菱形:
1、定義:一組鄰邊相等的平行四邊形是菱形
2、性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
3、判定:
(1)一組鄰邊相等的平行四邊形是菱形。(定義)
(2)對角線互相垂直的平行四邊形是菱形。
(3)四條邊相等的四邊形是菱形。
4、S菱形=底×高;S菱形=ab(a、b為兩條對角線)。
四、正方形:
1、定義:有一組鄰邊相等的矩形是正方形。或有一個角是直角的菱形是正方形。
2、性質:四條邊都相等,四個角都是直角;正方形既是矩形,又是菱形。
3、判定:(1)鄰邊相等的矩形是正方形。
(2)有一個角是直角的菱形是正方形。
五、梯形:
1、定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。
性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
判定:同一底上兩個角相等的梯形是等腰梯形;對角線相等的梯形是等腰梯形。
3、梯形的中位線分別平行於上、下兩底,且等於上、下兩底和的一半。
六、重心:
1、線段的重心就是線段的中點。
2、平行四邊形的重心是它的兩條對角線的交點。
3、三角形的三條中線交於疑點,這一點就是三角形的重心。
七、數學活動(教材115頁):
1、折紙多60°、30°、15°的角證明方法(重點30°角)
2、寬和長的比是(約為0.618)的矩形叫做黃金矩形。
第二十章數據的分析
一、加權平均數:計算公式(教材125頁。)
二、中位數:將一組數據按照由小到大(大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數;如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
三、眾數:一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
四、極差:一組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。
五、方差:
1、計算公式:(表示的平均數)
2、性質:方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
六、數據的收集與整理的步驟:
1、收集數據;2、整理數據;3、描述數據;4、分析數據;5、撰寫調查報告。
Ⅳ 數學七八年級知識點總結
聲學 5. 一切正在發聲的物體都在振動,振動停止,發聲停止. 6. 聲音靠介質傳播, 聲音在15℃空氣中的傳播速度是340米/秒, 真空不能傳聲. 熱學 7. 物體的冷熱程度叫溫度, 測量溫度的儀器叫溫度計, 它的原理是利用了水銀、酒精、煤油等液體的熱脹冷縮性質製成的. 8. 溫度的單位有兩種: 一種是攝氏溫度, 另一種是國際單位, 採用熱力學溫度.而攝氏溫度是這樣規定的:把冰水混合物的溫度規定為0度, 把一標准大氣壓下的沸水規定為100度, 0度和100度之間分成100等分, 每一等分為1攝氏度. -6℃讀作負6攝氏度或零下6攝氏度. 9. 使用溫度計之前應: (1)觀察它的量程; (2)認清它的最小刻度. 10. 在溫度計測量液體溫度時, 正確的方法是: (1)溫度計的玻璃泡要全部浸入被測液體中; 不要碰到容器底或容器壁; (2)溫度計玻璃泡浸入被測液體後要稍候一會兒, 待溫度計的示數穩定後再讀數; (3)讀數時玻璃泡要繼續留在被測液體中, 視線與溫度計中的液柱上表面相平. 11. 物質從固態變成液態叫熔化(要吸熱), 從液態變為固態叫凝固(要放熱). 12. 固體分為晶體和非晶體, 它們的主要區別是晶體有一定的熔點, 而非晶體沒有. 13. 物質由液態變為氣態叫汽化(吸熱), 氣態變為液態叫液化(放熱). 汽化有兩種方式: 蒸發和沸騰. 沸騰與蒸發的區別是: 沸騰是在一定的溫度下發生的, 在液體表面和內部同時發生的劇烈的汽化現象, 而蒸發是在任何溫度下發生的, 只在液體表面發生的汽化現象. 14. 要加快液體的蒸發, 可以提高液體的溫度, 增大液體的表面積和加快液體表面的空氣流動速度. 15. 液體沸騰時的溫度叫沸點, 沸騰時只吸收熱量,溫度不變,有時因為液體中含雜志沸點會有適當變化,水的沸點是100℃. 16. 要使氣體液化有兩種方法: 一是降低溫度, 二是壓縮體積. 17. 物質從固態變為氣態叫氣化(吸熱), 從氣態變為液態叫液化(放熱). 光學 18. 光在均勻介質中是沿直線傳播的.光在真空(空氣)的速度是3×100000000 米/秒. 影子、日食、月食都可以用光在均勻介質中沿直線傳播來解釋. 19. 光的反射定律:反射光線與入射光線、法線在同一平面內, 反射光線與入射光線分居法線兩側, 反射角等於入射角. 20. 平面鏡的成像規律是: (1)像與物到鏡面的距離相等; (2)像與物的大小相等; (3)像與物的連線跟鏡面垂直,(4)所成的像是虛像。 21. 光從一種介質斜射入另一種介質, 傳播方向一般會發生變化, 這種現象叫光的折射. 22. 凸透鏡也叫會聚透鏡,如老花鏡. 凹透鏡也叫發散透鏡, 如近視鏡. 23. 照相機的原理是:凸透鏡到物體的距離大於2倍焦距時成倒立、縮小的實像. 24. 幻燈機、投影儀的原理:物體到凸透鏡的距離在2倍焦距和一倍焦距之間時成倒立、放大的實像. 25. 放大鏡、顯微鏡的原理是:物體到凸透鏡的距離小於焦距時,成正立、放大的虛像. 26.天文望遠鏡分托普勒望遠鏡和伽利略望遠鏡。托普勒望遠鏡的原理是目鏡焦距小,物鏡焦距大,物鏡呈倒立縮小的實像幾乎在焦點上,從而顯倒立縮小實像,目鏡在此基礎上呈放大的虛像,即f1+f2。伽利略望遠鏡目鏡呈放大虛像,即f1-f2. 力與運動 2. 長度的測量工具是刻度尺, 主單位是米. 3. 物體位置的變化叫機械運動, 最簡單的機械運動是勻速直線運動. 4. 速度是表示物體運動快慢的物理量,速度等於運動物體在單位時間內通過的路程. 用公式表示: V=S/t ,速度的主單位是米/秒. 26. 物體中含有物質的多少叫質量.質量的國際主單位是千克,測量工具是天平. 27. 天平的使用方法:(1)把天平放在水平台上,被測物放在左盤里,砝碼放在右盤里. 28.某種物質單位體積的質量叫做這種物質的密度.密度的國際主單位是千克/米3 , 計算公式是ρ= .密度是物質本身的一種屬性,它不隨物體的形狀、狀態而改變,也不隨物體的位置而改變.一杯水和一桶水的質量不同,體積不同,但密度是相同的.1升=1分米3,1毫升=1厘米3,1克/厘米3=1000千克/米3.
Ⅳ 初二下學期數學有哪些難的知識點為什麼呢
步入了初中時代,學習壓力自然會增加,而且學習的難度也會大大增加。對於初二的學生來說,初二的下學期數學有非常多難的知識點。比如說一次函數與反比例函數。這也是初二學生接觸的函數知識將貫穿初中以及高中學習的整個過程,是代數學習的重點內容,也是解決綜合性問題的強力工具,它的學習效果直接影響到學生在中考中的解答。
三、畫圓平行四方形
在初二下學期的數學中,學習畫圓和平行四邊形的求證都是非常重要的,而且這個點是非常的難。因為圓和平行四方形它是不一定它是不能確定的數值,所以在求值的過程中經常會因為某一條線的變化而改變,所以難就難在這一點。可能有些時候你已經把他的答案求證出來了,但是卻因為某一點而出錯。所以在學習的過程中要不斷的練習數學式,才能夠打破困難。
Ⅵ 初中數學知識歸納
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
Ⅶ 我想請各位同學幫我歸納八年級下學期的數學知識點(滬教版)。
1、完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
口決:首平方,尾平方,2倍乘積在中央;
2、結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
3、在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
添括弧法則:添正不變號,添負各項變號,去括弧法則同樣
六、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n)。
2、在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0。
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的;當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序。
七、整式的除法
1、單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
2、多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
八、分解因式
1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
2、因式分解與整式乘法是互逆關系。
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘。
分解因式的一般方法:
第一種:提公共因式法
1、如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
2、概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
3、易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉。
第二種:運用公式法
1、如果把乘法公式反過來,就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法。
2、主要公式:
(1)平方差公式:
(2)完全平方公式:
3、易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
4、運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號。
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍。
5、因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。
第三種:分組分解法
1、分組分解法:利用分組來分解因式的方法叫做分組分解法。
2、概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
3、注意: 分組時要注意符號的變化.
第四種:十字相乘法
1、對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.
2、二次三項式 的分解:
3、規律內涵:
(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同。
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p。
4、易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確。
Ⅷ 初中數學知識點歸納
初中數學公式
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
sin30:二分之一 sin45:二分之根二 sin60:二分之根三
cos30:二分之根三 cos45:二分之根二 cos60:二分之一
tan30:三分之根三 cos45:一 tan60:根三
等比數列:
若q=1 則S=n*a1
若q≠1
推倒過程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式兩邊同時乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)
等差數列
推導過程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把這個公式倒著寫一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上兩式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2
Ⅸ 初二下學期數學的難點是哪些
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?
知識點
一般來說這像科目小學與初中的區別是非常大的,知識點需要了解的非常多,並且難點也是非常多的,解題的步驟要求會更加嚴厲,一般初中開始學習一些思想如方程思想等等,這是常見的.
初中數學應該怎麼學?--難點了解
初中的時候一般對計算能力要求比較高,各種方式比如,有理數等等這都需要多種方式的計算並且非常看重解答題目的能力,函數等等都會用到概念以及一些公式,下來就是四邊形等等,這些都需要完全的了解知識點之後在進行測試,並且在學習完之後大約在初三的時候就需要備戰中考,要將學過的知識全部都復習一次,需要全方面的了解各個方面的難點等等,所以在房價的時候需要找出一定的空閑時間進行復習以及預習的工作.
初中數學應該怎麼學?--知識圖
一般來說,畫出完成的知識圖可以使我們更快的清楚這方面的內容,要想學好的話必須要全面的熟悉這些知識點的運用,當遇到難點的時候可以換個角度去考慮,慢慢的就會找到自己的解題方式.
還需要了解各種的概念、公式、法則等等,這們課程是需要非常強的連貫性的,如果在遇到一些難點,那可能是某一點遇到了困難,某一些知識沒有懂,需要及時的找到然後解決,這樣分數才會有一定的提升.
知識點
當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.
以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.
Ⅹ 八年級下冊數學反比例函數所有知識點。
如果兩個變數x、y之間的關系可以表示成y=k/x (k為常數,k≠0)的形式,那麼稱y是x的反比例函數。 因為y=k/x是一個分式,所以自變數X的取值范圍是X≠0。
反比例函數的圖像屬於以原點為對稱中心的中心對稱的雙曲線,
反比例函數圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。
反比例函數性質
1.當k>0時,圖象分別位於第一、三象限,同一個象限內,y隨x的增大而減小;當k<0時,圖象分別位於二、四象限,同一個象限內,y隨x的增大而增大。
2.k>0時,函數在x<0上同為減函數、在x>0上同為減函數;k<0時,函數在x<0上為增函數、在x>0上同為增函數。 定義域為x≠0;值域為y≠0。
3.因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數的圖象不可能與x軸相交,也不可能與y軸相交。
4. 在一個反比例函數圖象上任取兩點P,Q,過點P,Q分別作x軸,y軸的平行線,與坐標軸圍成的矩形面積為S1,S2則S1=S2=|K|
5. 反比例函數的圖象既是軸對稱圖形,又是中心對稱圖形,它有兩條對稱軸 y=x y=-x(即第一三,二四象限角平分線),對稱中心是坐標原點。
6.若設正比例函數y=mx與反比例函數y=n/x交於A、B兩點(m、n同號),那麼A B兩點關於原點對稱。
7.設在平面內有反比例函數y=k/x和一次函數y=mx+n,要使它們有公共交點,則n^2+4k·m≥(不小於)0。
8.反比例函數y=k/x的漸近線:x軸與y軸。
9.反比例函數關於正比例函數y=x,y=-x軸對稱,並且關於原點中心對稱.
10.反比例上一點m向x、y分別做垂線,交於q、w,則矩形mwqo(o為原點)的面積為|k|
11.k值相等的反比例函數重合,k值不相等的反比例函數永不相交。
12.|k|越大,反比例函數的圖象離坐標軸的距離越遠。
13.反比例函數圖象是中心對稱圖形,對稱中心是原點