1. 小學應用題題型歸納有哪些
小學應用題題型歸納有:簡單應用題、復合應用題、平均數問題、歸一問題、歸總問題、和差問題等等。
1、簡單應用題。
只含有一種基本數量關系,或用一步運算解答的應用題,通常稱作簡單應用題。
解題步驟:審題——選擇演算法和列式計算——檢驗。
2、復合應用題。
有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
主要包括含有解答三個已知條件的兩步計算的應用題和解答含有兩個已知條件的兩步計算的應用題等等。
3、平均數問題。
該題型的解題關鍵在於確定總數量和與之相對應的總份數。所以識記並熟練掌握一些固定的數學公式是解題的關鍵。
例如:一輛汽車以每小時100千米的速度從甲地開往乙地,又以每小時60千米的速度從乙地開往甲地。求這輛車的平均速度。
求汽車的平均速度就可以利用公式。此題可以把甲地到乙地的路程設為「1」,則汽車行駛的總路程為「2」,從甲地到乙地的速度為100千米/時,所用的時間為1/100小時,汽車從乙地到甲地速度為60千米/時,所用的時間是1/60小時,汽車共行的時間為(1/100+1/60)小時,汽車的平均速度為2 ÷(1/100+1/60)=75(千米)。
4、歸一問題。
已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
該題型的解題關鍵在於從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
例如:一個織布工人,在七月份織布4774米。照這樣計算,織布6930米,需要多少天?
解答這類題型必須先求出平均每天織布多少米,就是單一量。即需要:6930 ÷(4774÷ 31)=45(天)。
5、歸總問題。
是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。其特點是兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量=另一個單位數量。
例如:修一條水渠,原計劃每天修800米,6天修完。實際4天修完,每天修了多少米?
因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫作「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。800×6÷4=1200(米),所以每天修了1200米。
6、和差問題。
已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
該題型的解題關鍵是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。解題規律是用(和+差)÷2 =大數,大數-差=小數,(和-差)÷2=小數,和-小數=大數。
例如:某加工廠甲班和乙班共有工人94人,因工作需要臨時從乙班調46人到甲班工作,這時乙班比甲班人數少12人,求原來甲班和乙班各有多少人?
從乙班調46人到甲班,對於總數沒有變化,現在把乙數轉化成2個乙班,即94-12 ,由此得到現在的乙班是(94-12)÷ 2=41(人),乙班在調出46人之前應該為41+46=87(人),甲班為94-87=7(人)。
以上內容參考:網路-小學生應用題大全
2. 小學一年級數學應用題歸納總結
找出幾個不同類型的應用題,給孩子解釋一下!
比如:
知道總數,求其中一部分的,用減法;
知道其中一部分,求和(一共有多少),一般用加法;
哪個比哪個多多少,少多少,一般用減法;等
。
應用題目中沒有出現的數字不能寫在等號前面的列式中,要求得的結果一定要在等號後面。(因為有時小孩子不列算式就能知道結果,有時會把結果寫在等號前面的算式中。)
主要是讓孩子理解!
我家孩子也上一年級,有問題我們可以交流!
3. 小學數學要掌握哪些知識點
小學數學知識點:一是計算,包括加減乘除四則運算,其中有整數和小數以及分數的計算,這是數學的基礎。二是,加減乘除的應用題。三,關於數的認識,大數,分數的讀寫以及數位順序。四,關於長度,重量,時間的單位及應用。五,圖形的認識,周長,面積以及圖形的運動位置。六,初步的方程概念。
4. 小學的數學知識點(全部)
小學數學復習考試知識點匯總
一、小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類
1、什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關系:
一個加數=和-另一個加數
4、減法各部分的關系:
減數=被減數-差 被減數=減數+差
5、乘法各部分之間的關系:
一個因數=積÷另一個因數
6、除法各部分之間的關系:
除數=被除數÷商 被除數=商×除數
7、角
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角是直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角是銳角。
(7)什麼是鈍角?
大於90°而小於180°的角是鈍角。
(8)什麼是周角?
一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.
8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?什麼叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形內角和是180°.
10、四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。
13、加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、什麼是被減數?什麼是減數?什麼叫差?
在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、加法各部分間的關系:
和=加數+加數 加數=和-另一加數
17、減法各部分間的關系:
差=被減數-減數 減數=被減數-差 被減數=減數+差
18、乘法
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、除法
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中,已知的一個因數叫除數。
(4)什麼是商?
在除法中,求出的未知因數叫商。
20、乘法各部分的關系:
積=因數×因數 一個因數=積÷另一個因數
21、(1)除法各部分間的關系:
商=被除數÷除數 除數=被除數÷商
(2)有餘數的除法各部分間的關系:
被除數=商×除數+余數
22、什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、什麼是有限小數?
小數部分的位數是有限的小數叫有限小數。
28、什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、什麼是方程?
含有未知數的等式叫方程。
34、什麼是解方程?
求方程解的過程叫解方程。
35、什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。
36、什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、什麼是偶數?
能被2整除的數叫偶數。
38、什麼是奇數?
不能被2整除的數叫奇數。
39、什麼樣的數能被5整除?
個位上是0或5的數能被5整除。
40、什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、什麼是公約數?什麼叫最大公約數?
幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。
46、什麼是互質數?
公約數只有1的兩個數叫互質數。
47、什麼是公倍數?什麼是最小公倍數?
幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。
48、分數
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、怎麼比較分數大小?
(1)分母相同的兩個分數,分子大的分數比較大。
(2)分子相同的兩個分數,分母小的分子比較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整分數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、比
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、長方體和正方體
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體體積?
物體所佔空間的大小叫做物體的體積。
52、圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心、並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什麼是弧?
在圓上兩點之間的部分叫弧。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、比例
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、圓柱
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、小學數學量的計算單位及進率歸類
1、長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃 1平方千米=1000000平方米
1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、質量單位及進率:噸、千克、公斤、克
1噸=1000千克 1千克=1公斤 1千克=1000克
5、時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年 1年=12月 1天=24小時 1小時=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,閏年2月29天)
四、常用計算公式表
1、長方形面積=長×寬,計算公式S=ab
2、正方形面積=邊長×邊長,計算公式S=a×a=a2
3、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
4、正方形周長=邊長×4,計算公式C=4a
5、平行四邊形面積=底×高,計算公式S=ah
6、三角形面積=底×高÷2,計算公式S=a×h÷2
7、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
8、長方體體積=長×寬×高,計算公式V=abh
9、圓的面積=圓周率×半徑平方,計算公式V=πr2
10、正方體體積=棱長×棱長×棱長,計算公式V=a3
11、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
12、圓柱的體積=底面積×高,計算公式V=sh
5. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
6. 小學應用題題型歸納是什麼
小學應用題題型歸納是:30類典型應用題。和差問題,和倍問題,差倍問題,倍比問題,相遇問題,追及問題,植樹問題,年齡問題,行船問題,列車問題,時鍾問題,盈虧問題,工程問題,正反比例問題,按比例分配,百分數問題,牛吃草問題,雞兔同籠問題,方陣問題,商品利潤問題,存款利率問題,溶液濃度問題,構圖布數問題等。
應用題的定義
應用題是用語言或文字敘述有關事實,反映某種數量關系,並求解未知數量的題目。每個應用題都包括已知條件和所求問題。以往,中國的應用題通常要求敘述滿足三個要求,無矛盾性,即條件之間、條件與問題之間不能相互矛盾,完備性,即條件必須充分,足以保證從條件求出未知量的數值,即已知的幾個條件不能相互推出。
小學數學應用題通常分為兩類,只用加、減、乘、除一步運算進行解答的稱簡單應用題,需用兩步或兩步以上運算進行解答的稱復合應用題。
7. 小學數學應用題有哪六個要點
還原問題:已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
置換問題:題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
盈虧問題(盈不足問題):題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
年齡問題:年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
雞兔問題:已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
公約數、公倍數問題:運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
分數應用題:指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
工程問題:它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
工作效率×工作時間=工作量
工作量÷工作時間=工作效率
工作量÷工作效率=工作時間?
看在我寫這么多得份上
..
採納我得了
..
8. 小學階段數學知識總結
小學數學總復習各模塊知識
數的認識 簡易方程
一、數和數的運算 數的整除 二、代數初步知識
數的運算 比和比例
一般復合應用題 長度
典型應用題 面積
三、應用題 分數、百分數應用題 四、量的計量 體積
列方程解應用題 重量
比和比例應用題 時間
人民幣
線 統計表
平面圖形的認識與計算 角 六、統計與概率
五、空間與圖形 平面圖形 統計圖
長方體、正方體
立體圖形的認識與計算
圓柱體、圓錐體
一、數和數的運算
(一)數的認識
整數的含義:像…-3,-1,0,1,2,3,…這樣的數統稱整數。
正數和負數的含義:像1,+5,6,…這樣的數叫做正數;像-3,-2,-9,…這樣的數叫做負數。
佔位
0是最小的自然數,0是偶數,0的作用 表示起點
表示界線
自然數 1是最小的一位數,是自然數的基本單位;1既不是質數,也不是合數。
數的意義: 是整數的一部分,可表示基數也可以表示序數
意義:把單位「1」平均分成若干份,表示這樣一份或幾份的數叫做分數。表示其中一份的數就是分數單位
分數
真分數——分子比分母小(小於1)
分類: 假分數——分子大於或等於分母(大於或等於1)
帶分數——分子比分母大(大於1)
意義:把整體「1」平均分成10份、100份、1000份……這樣的一份或幾份
是十分之幾,百分之幾,千分之幾……可以用小數表示
有限小數
按小數部分分 無限不循環小數
小數 無限小數 純循環小數
分類 純小數 循環小數
按整數部分分 混循環小數
帶小數
整數和小數數位順序表
整數部分 小數部分
… 億級 萬級 個級
數位 … 千億位 百億位 十億位
億位 千萬位 百萬位 十萬位
萬位
千位
百位
十位
個位 十分位 百分位 千分位 萬分位 …
計數單位 … 千億 百億 十億
億 千萬 百萬 十萬
萬
千
百
十
一
十分之一 百分之一 千分之一 萬分之一 …
百分數:表示一個數是另一個數的百分之幾的數叫做百分數。(百分率或百分比)
折扣*:商業用名詞,幾折就是十分之幾,成數,幾成就是百之幾十。
注意:百分數、折扣只表示兩個數的倍比關系,而分數除倍比關系外還可以表示具體數量。
數的讀寫:
1、整數的讀法:從高位到低位,一級一級地讀,每級末尾的0都不讀,其他數位連續有幾個0都只讀一個0。
2、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀寫:整數部分按整數來讀(寫),小數點讀作「點」,小數部分依次讀(寫)出每一位上的數字。
數的改寫
寫成用「萬」或「億」作單位的數
1、多位數的改寫和省略: 省略「萬」或「億」位後面的尾數
2、分數、小數、百分數的互化
改寫成分母是10、100、1000…的分數再約分
小數 分數
用分子除以分母
小數點向右移動兩位,同時添上%
小數 百分數
去掉%,小數點向左移動兩位
寫成分數形式並約分
百分數 分數
先寫成小數,再寫成百分數
數的大小比較:
1、整數的大小比較:先看位數,位數多的數大:位數相同,從高位看起相同數位上的數大的那個數就大
2、小數大小的比較:先比較兩個數的整數部分,整數部分大的那個數就大;整數部分相同就看小數部分從高位看起,依數位比較
3、分數大小比較:分母相同分子大的分數大;分子相同分母小的分數大;分母不同,先通分再比較。
數的基本性質:
1、分數的基本性質:分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。
2、小數的基本性質:小數的末尾添「0」或者去掉「0」,小數的大小不變。
(二)數的整除
定義:(小學階段研究「數的整除」時所說的數一般指非0自然數)
數a除以b(b≠0)的商正好是整數而沒有餘數,我們就說a能被b整除(或者說b能整除a)。
倍數 公倍數 最小公倍數
整除 因數 公因數 最大公因數
質數 合數 互質數(已刪除)
質因數 分解質因數(已刪除)
2的倍數的特徵:個位是0、2、4、6、8。
偶數 奇數(能被2整數的數叫偶數,不能被2整除的數叫奇數。)
3的倍數的特徵:各位上的數的和是3的倍數
5的倍數的特徵:個位上是0或者5的數。
(三)數的運算
1、四則運算的意義
數的
分類
運算名稱 整數 小數 分數
加法 把兩個數合並成一個數的運算。
減法 已知兩個加數的和與其中一個加數,求另一個加數的運算。
乘法 求幾個相同加數的和的簡便運算。 小數乘整數與整數乘法意義相同。 分數乘整數與整數乘法意義相同。
一個數乘小數,就是求這個數的十分之幾,百分之幾…是多少。 一個數乘分數,就是求這個數的幾分之幾是多少。
除法 已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、四則運算的法則
整數 小數 分數
加減 相同數位對齊,從低位算起
加法:滿十就向前一位進一
減法:不夠減就從前一位退,退一當十 小數點對齊,從低位算起,按整數加減法進行計算,結果中的小數點和加減的數的小數點對齊。 1、同分母分數相加減,分母不變,分子相加減。
2、異分母分數相加減,先通分,然後再按同分母分數相加減的方法計算。
3、結果能約分的要約分。
乘法 1、從個位乘起,依次用第二個因數每一位上的數去乘第一個因數。
2、用第二個因數哪一位上的數去乘,得數的末位就和第二個因數的哪一位對齊。
3、再把幾次乘得的數加起來。 1、按整數乘法法則算出積。
2、看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。 1、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
2、有整數的把整數看作分母是1的假分數。
3、有帶分數的,通常先把帶分數化成假分數。
除法 除數是整數:從被除數的高位除起,除數是幾位就先看被除數的前幾位,如果不夠除,就要多看一位,除到哪一位就要把商寫在哪一位的上面。商的小數點和被除數的小數點對齊。 除數是小數:先移動除數的小數點,使它變成整數,除數的小數點向右移動幾位,被除數的小數點也向右移動相同的位數(位數不夠的補0),然後按照除數是整數的除法進行計算。 甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
3、四則運算各部分的關系:
加數+加數=和 被減數—減數=差
一個加數=和—另一個加數 減法 被減數=減數+差
減數=被減數—差
因數×因數=積 被除數÷除數=商
一個因數=積÷另一個因數 除法 被除數=商×除數
除數=被除數÷商
4、運算定律和運算性質
加法交換律 : a+b=b+a
加法結合律 : (a+b)+c=a+(b+c)
乘法交換律 : a×b=b×a
乘法結合律 : (a×b)×c=a×(b×c)
乘法分配律 : (a+b)×c=a×c+b×c
減法的運算性質: a-b-c=a-(b+c)
除法的運算性質: a÷(b×c)=a÷b÷c
5、四則運算的順序:
在一個沒有括弧的算式里,如果只含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先算第二級運算,再算第一級運算。
有括弧的算式里,要先算括弧里的,再算括弧外的。
二、代數的初步知識
(一)簡易方程
1、用字母表示數:
(1) 用字母可以表示我們學過的自然數、整數、小數、百分數……
(2) 用含有字母的式子,可以簡明地表達數學概念、運算定律和數學計算公式。還可以簡明地表達數量關系。
2、簡易方程
(1) 等式:表示相等關系的式子。
(2) 方程:含有未知數的等式。
(3) 方程的解:使方程左右兩邊相等的未知數的值。
(4) 解方程:求方程的解的過程。
(5) 解方程的依據:等式的基本性質(天平平衡的道理)
(二)比和比例:
1、 比和比例的意義與性質
比 比例
意義 兩個數相除又叫做兩個數的比 表示兩個比相等的式子叫做比例
基本
性質 比的前項和後項同時乘上或者除以相同的數(0除外),比值不變。 在比例里,兩個內項的積等於兩個外項的積。
2、 比、分數與除法的關系
比 比號 前項 後項 比值
分數 分數線 分子 分母 分數值
除法 除號 被除數 除數 商
3、 求比值和化簡比的區別與聯系
一般方法 結果
求比值 根據比值的意義,用前項除以後項。 是一個商,可以是整數,小數或分數。
化簡比 根據比的基本性質,把比的前項和後項同時乘上或同時除以相同的數(0除外)。 是一個比 ,它的前項和後項都是整數。
4、 比例尺
圖上距離和實際距離的比,叫做這幅圖的比例尺。
5、正比例和反比例的區別與聯系
相同點 不同點
特徵 關系式
正比例關系 兩種相關聯的量,一種量變化,另一種量也隨著變化。 兩種量中相對應的兩個數的比值一定。
反比例關系 兩種量中相對應的兩個數的積一定。
ху=k (一定)
三、應用題
(一) 一般復合應用題
1、一般復合應用題的解法
(1)分析法:從問題入手,逐步分析題里的已知條件。
(2)綜合法:從應用題的已知條件入手,逐步推出未知。
(3)分析綜合法:將分析法、綜合法結合起來交替使用的方法。當已知條件中有明顯計算過程時就用綜合法順推,遇到困難時再轉向原題所提的問題用分析法幫忙,逆推幾步,順推和逆推聯繫上了,問題便解決了。
2、一般復合應用題的解題步驟:
(1)審清題意,並找出已知條件和所求問題;
(2)分析題目里的數量間的關系,從而確定先算什麼,再算什麼,最後算什麼;
(3)列式,算出結果;
(4)進行檢驗,寫出答案。
(二)典型應用題(有一定解答規律的應用題)
1、求平均數問題
(1) 求平均數問題的特點:把各「部分量」合並為「總量」,然後按「總份數」平均,求其中一份是多少。
(2) 求平均數問題的解題規律:關鍵是先求出「總量」和「總份數」,然後用「總量÷總份數=平均數」,特殊情況可用「移多補少法」解答。
2、歸一應用題
(1) 歸一應用的特點:從已知條件中求出「單一量」,再以「單一量」為標准去計算所求的量。歸一問題通常分為正歸一和反歸一。
(2) 歸一問題的解題規律:首先求出一個單位數量,然後以這個「單位量」為標准,根據題目的要求,用乘法算出若干個「單位量」是多少,這是正歸一的解題規律。或用除法算出總量包含多少個「單位量」,這是反歸一的解題規律。歸一問題還可以用倍比問題的解題方法求解。
3、相遇問題
(1)特點:A、兩個運動物體;B、運動方向相向;C、運動時間同時。
(2)解題規律:速度和×相遇時間=路程
路程 ÷速度和=相遇時間
路程 ÷相遇時間=速度和
(三)分數、百分數應用題
1、分數乘法應用題
已知一個數,求它的幾分之幾(百分之幾)是多少,用乘法。即:「一個數×幾分之幾(百分之幾)」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾(或百分之幾)(又稱:分率)
特徵:
所求問題:求單位「1」的幾分之幾(百分之幾)是多少(又稱:部分量)
用等式表示三量的關系:單位「1」的量×分率=部分量
對應關系
2、分數除法應用題
(1)已知一個數的幾分之幾(百分之幾)是多少,求這個數,用除法。即「多少÷幾分之幾」
已知條件:單位「1」的幾分之幾(分率);單位「1」的幾分之幾是多少
(部分量)
特徵
所求問題:單位「1」的量
用等式表示三量的關系:部分量÷分率=單位「1」的量
對應關系
(2)求一個數是另一個數的幾分之幾(百分之幾)用除法。即「一個數÷另一個數」。
已知條件:表示單位「1」的量;單位「1」的幾分之幾是多少(部分量)
特徵
所求問題:求部分量是單位「1」的幾分之幾(百分之幾)
用等式表示三量的關系:部分量÷單位「1」的量=分率
對應關系
3、工程問題的應用題
把工作總量用「1」表示,工作效率用單位時間內做工作總量的「幾分之一」表示。根據工作總量與工作效率,就能求出合作完成的工作時間。
三量之間的關系式:工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間= 工作效率
(四)列方程解應用題
1、列方程解應用題的思考方法:用字母代替應用題中的未知數,根據數量間的相等關系列方程,解方程。
2、列方程解應用題的一般步驟
(1)弄清題意,找出未知數並用X表示。
(2)找出數量間的相等關系,列出方程。
(3)解方程。
(4)檢驗並答。
(五)比和比例應用題
比和比例應用題包括:比例尺、按比例分配、和正反比例應用題。
1、比例尺中解題關系式:圖上距離∶實際距離=比例尺
2、按比例分配應用題 :要分配的總量×各部分量的分率=各部分量。
3、正比例 у/χ=X/Y 反比例χу=XY(正、反比例應用題已刪去)
四、量與計量
(一)量、計量和計量單位的意義
事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
(二)常用的計量單位及其進率
1、長度、面積、地積、體積、容積、重量單位及其進率
長度 1千米(km)=1000米(m) 1米(m) =10分米 (dm)
1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm)
面積 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地積 1平方千米=100公頃
1公頃=10000平方米
體積 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容積 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1噸=1000千克 1千克=1000克
2、常用時間單位及其關系
世紀 年 月 日 時 分 秒
100 12 24 60 60
每月31天的有1、3、5、7、8、10、12各月;每月30天的有4、6、9、11各月;平年全年365天,平年二月28天;閏年全年366天,閏年二月29天。
3、人民幣:1元=10角 1角=10分
(三)同類計量單位之間的轉化
(化法)乘以進率
高級單位的數 低級單位的數
(化法)除以進率
五、空間與圖形
(一)平面圖形的認識和計算
1、線
線段:用直尺把兩點連接起來就得到一條線段。
線段的長就是這兩點間的距離。(有兩個端點)
直線:把線段的兩端無限延 平行線:在同一平面內不相交的兩條直線,叫做
長可以得到一條直線 平行線。
(沒有端點) 垂線:兩條直線相交成直角,這兩條直線叫做互
相垂直,其中一條直線叫另一條直線的垂線。
射線:把線段的一端無限延長可以得到一條射線。(有一個端點)
2、角:從一點引出兩條射線所組成的圖形
銳角:小於90度的角
直角:等於90度的角
鈍角:大於90度而小於180度的角
平角:180度的角
周角:360度的角
3、平面圖形
(1)三角形:由三條線段首尾相互連接圍成的圖形
銳角三角形:三個角都是銳角
按角分 直角三角形:有一個角是直角
鈍角三角形:有一個角是鈍角
三角形
等腰三角形:兩條邊相等
按邊分 等邊三角形:三條邊相等
不等邊三角形:三條邊都不相等
(2)四邊形:由四條線段首尾依次連接圍成的圖形。 扇形
平行四邊形 長方形 正方形 (3)圓形
四邊形 環形
直角梯形
梯形
等腰梯形
(畫線段、畫角、畫高、量線段、畫垂線、畫圓、畫對稱軸)
(4)特徵及周長、面積計算公式:
名稱 圖形 字母意義 特 征 周長面積公式
正方形
a a:邊長 四條邊都相等,四個角都是直角 C=4a
S=a²
長方形 b
a a:長
b:寬 對邊相等,四個角都是直角 C=2(a+b)
S=ab
平行四 邊形 h
a a:底
h:高 兩組對邊分別平行且相等 S=ah
三角形 h
a a:底
h:高 有三條邊,三個角,內角的和是180度 S=ah÷2
梯形 a
h
b a:上底
b:下底
h:高 只有一組對邊平行 S=(a+b)h÷2
圓 d
r d:直徑
r:半徑 同圓內半徑相等,直徑相等,直徑是半徑的2倍 C=πd=2πr
S=πr²
(二)立體圖形的認識和計算
1、長方體與正方體特徵的區別與聯系
特徵
名稱 相同點 不同點
面 棱 頂點 面的特點 棱長
長方體
6個 12條 8
個 6個面一般都是長方形(也可能有兩個相對的面是正方形),相對的面的面積相等 每組(有3組,分別叫長、寬、高)互相平行的4條棱相等
正方體
6個 12條 8
個 6個面都是相等的正方形 12條棱都相等
2、圓柱、圓錐的特徵
名稱 圖形 特徵
圓
柱
上、下底面是面積相等的圓,兩個底面之間的距離叫做高。側面沿高展開是長方形(或正方形)。有無數條高
圓
錐
底面是圓形,頂點到底面圓心的距離叫做高。只有一條高。
3、立體圖形的表面積和體積的計算公式
名稱 圖形 字母意義 表面積s , 體積v
正方體
a:棱長 S=6a² V=a³
長方體
a:長 b:寬
h:高 S=(ab+ah+bh)x 2 V=abh
圓柱體
r:底面半徑 h:高
c:底面周長 S側=ch=πdh =2πrh
S表=S側 +2S底面 V=sh=πr²h
圓錐體
r:底面半徑
h:高 V=sh÷3
=πr²h÷3
六、統計與概率
單式統計表
統計表 復式統計表
百分數統計表
統計表包括:總標題、縱欄標題、橫欄標題、數據資料欄、數量單位、製表日期
條形統計圖(單式、復式)
統計圖 折線統計圖(單式、復式)
扇形統計圖
統計圖的製法與特點
製法 特點
條形
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量2、根據數量多少畫直條
3、寫名稱、製表日期、圖例 很容易看出數量的多少
折線
統計圖 1、 整理數據,畫出橫、縱軸,單位長度表示一定的數量
2、 根據數量多少描點,再把各點用線段順次連接起來。
3、 寫名稱、製表日期、圖例 不但可表示數量的多少,而且能夠表示數量的增減變化
扇形
統計圖 1、計算各部分佔總數的百分比,再算出與各部分所對應的扇形的圓心角的度數。2、取適當半徑畫圓,用量角器量出各扇形的圓心角,作扇形。3、註明各扇形表示內容和所佔百分比,並用不同的標記加以區別,4、寫上標題及制圖日期。 清楚的表示出各部分與總數及部分與部分的關系
數學《北師大版》與(人教版)增、刪知識
《北師大版》比(人教版)新增知識
1、分類(按一定標准或不同標准進行分類)
2、位置與順序(前、後、左、右、上、下)
3、位置與方向(東、南、西、北)
4、方向與路線(東南、東北、西南、西北)
5、觀察物體(正面、上面、左面或右面)
6、可能性(大、小;可能、不可能、一定;分數表示、幾種結果)
7、生活中的推理(列表解決)
8、對稱、平移或旋轉(軸對稱圖形、方向、幾格)
9、圖形變換(繞點、方向、旋轉90°、平移幾格)
10、確定位置(方向、北偏××度,距離;數對)
11、生活中的負數(0既不是正數,也不是負數)
12、數圖形(數角、數三角形、數長方形)
13、游戲公式(公平性)
14、圖形規律(擺三角形、擺正方形、列表解決)
15、嘗試與猜測(雞兔同籠、點陣中的規律,圖表解決)
16、生活中的數(數據世界、數字用處、身份證)
17、看圖找關系(足球場內聲音、行為、成員間關系)
18、中位數和眾數
19、成數、折數
20、因數、公因數、最大公因數
21、字母單位:m、dm、cm、mm、km;g、kg、t、L、ML
22、搭配的學問(兩種物品以上)
23、比賽場次(循環賽)
24、組合圖形面積(只限兩個圖形)
25、觀察范圍
26、方程(加減或乘除同一個數、等式性質)
《北師大版》比《人教版》刪去知識
1、約數、公約數、最大公約數
2、互質數
3、分解質因數
4、用比例知識解應用題
9. 小學數學所有知識。
小學數學復習考試知識點匯總一、小學生數學法則知識歸類(一)筆算兩位數加法,要記三條1、相同數位對齊;2、從個位加起;3、個位滿10向十位進1。(二)筆算兩位數減法,要記三條1、相同數位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計演算法則1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括弧的要先算括弧裡面的。(四)四位數的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0隻讀一個「零」;3、末位不管有幾個0都不讀。(五)四位數寫法1、從高位起,按照順序寫;2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。(六)四位數減法也要注意三條1、相同數位對齊;2、從個位減起;3、哪一位數不夠減,從前位退1,在本位加10再減。(七)一位數乘多位數乘法法則1、從個位起,用一位數依次乘多位數中的每一位數;2、哪一位上乘得的積滿幾十就向前進幾。(八)除數是一位數的除法法則1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;2、除數除到哪一位,就把商寫在那一位上面;3、每求出一位商,餘下的數必須比除數小。(九)一個因數是兩位數的乘法法則1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;3、然後把兩次乘得的數加起來。(十)除數是兩位數的除法法則1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,2、除到被除數的哪一位就在哪一位上面寫商;3、每求出一位商,餘下的數必須比除數小。(十一)萬級數的讀法法則1、先讀萬級,再讀個級;2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。(十二)多位數的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。(十三)小數大小的比較比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。(十四)小數加減法計演算法則計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。(十五)小數乘法的計演算法則計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。(十六)除數是整數除法的法則除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。(十七)除數是小數的除法運演算法則除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。(十八)解答應用題步驟1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;3、進行檢驗,寫出答案。(十九)列方程解應用題的一般步驟1、弄清題意,找出未知數,並用X表示;2、找出應用題中數量之間的相等關系,列方程;3、解方程;4、檢驗、寫出答案。(二十)同分母分數加減的法則同分母分數相加減,分母不變,只把分子相加減。(二十一)同分母帶分數加減的法則帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。(二十二)異分母分數加減的法則異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。(二十三)分數乘以整數的計演算法則分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。(二十四)分數乘以分數的計演算法則分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數除以分數的計演算法則一個數除以分數,等於這個數乘以除數的倒數。(二十六)把小數化成百分數和把百分數化成小數的方法把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。(二十七)把分數化成百分數和把百分數化成分數的方法把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。二、小學數學口決定義歸類1、什麼是圖形的周長?圍成一個圖形所有邊長的總和就是這個圖形的周長。2、什麼是面積?物體的表面或圍成的平面圖形的大小叫做他們的面積。3、加法各部分的關系:一個加數=和-另一個加數4、減法各部分的關系:減數=被減數-差 被減數=減數+差5、乘法各部分之間的關系:一個因數=積÷另一個因數6、除法各部分之間的關系:除數=被除數÷商 被除數=商×除數7、角(1)什麼是角?從一點引出兩條射線所組成的圖形叫做角。(2)什麼是角的頂點?圍成角的端點叫頂點。(3)什麼是角的邊?圍成角的射線叫角的邊。(4)什麼是直角?度數為90°的角是直角。(5)什麼是平角?角的兩條邊成一條直線,這樣的角叫平角。(6)什麼是銳角?小於90°的角是銳角。(7)什麼是鈍角?大於90°而小於180°的角是鈍角。(8)什麼是周角?一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。(2)什麼是點到直線的距離?從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。9、三角形(1)什麼是三角形?有三條線段圍成的圖形叫三角形。(2)什麼是三角形的邊?圍成三角形的每條線段叫三角形的邊。(3)什麼是三角形的頂點?每兩條線段的交點叫三角形的頂點。(4)什麼是銳角三角形?三個角都是銳角的三角形叫銳角三角形。(5)什麼是直角三角形?有一個角是直角的三角形叫直角三角形。(6)什麼是鈍角三角形?有一個角是鈍角的三角形叫鈍角三角形。(7)什麼是等腰三角形?兩條邊相等的三角形叫等腰三角形。(8)什麼是等腰三角形的腰?有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。(9)什麼是等腰三角形的頂點?兩腰的交點叫做等腰三角形的頂點。(10)什麼是等腰三角形的底?在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?底邊上兩個相等的角叫等腰三角形的底角。(12)什麼是等邊三角形?三條邊都相等的三角形叫等邊三角形,也叫正三角形。(13)什麼是三角形的高?什麼叫三角形的底?從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。(14)三角形的內角和是多少度?三角形內角和是180°.10、四邊形(1)什麼是四邊形?有四條線段圍成的圖形叫四邊形。(2)什麼是平等四邊形?兩組對邊分別平行的四邊形叫做平行四邊形。(3)什麼是平行四邊形的高?從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。(4)什麼是梯形?只有一組對邊平行的四邊形叫做梯形。(5)什麼是梯形的底?在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。(6)什麼是梯形的腰?在梯形里,不平等的一組對邊叫梯形的腰。(7)什麼是梯形的高?從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。(8)什麼是等腰梯形?兩腰相等的梯形叫做等腰梯形。11、什麼是自然數?用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。12、什麼是四捨五入法?求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。13、加法意義和運算定律(1)什麼是加法?把兩個數合並成一個數的運算叫加法。(2)什麼是加數?相加的兩個數叫加數。(3)什麼是和?加數相加的結果叫和。(4)什麼是加法交換律?兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。14、什麼是減法?已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。15、什麼是被減數?什麼是減數?什麼叫差?在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。16、加法各部分間的關系:和=加數+加數 加數=和-另一加數17、減法各部分間的關系:差=被減數-減數 減數=被減數-差 被減數=減數+差18、乘法(1)什麼是乘法?求幾個相同加數的和的簡便運算叫乘法。(2)什麼是因數?相乘的兩個數叫因數。(3)什麼是積?因數相乘所得的數叫積。(4)什麼是乘法交換律?兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。(5)什麼是乘法結合律?三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。19、除法(1)什麼是除法?已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。(2)什麼是被除數?在除法中,已知的積叫被除數。(3)什麼是除數?在除法中,已知的一個因數叫除數。(4)什麼是商?在除法中,求出的未知因數叫商。20、乘法各部分的關系:積=因數×因數 一個因數=積÷另一個因數21、(1)除法各部分間的關系:商=被除數÷除數 除數=被除數÷商(2)有餘數的除法各部分間的關系:被除數=商×除數+余數22、什麼是名數?通常量得的數和單位名稱合起來的數叫名數。23、什麼是單名數?只帶有一個單位名稱的數叫單名數。24、什麼是復名數?有兩個或兩個以上單位名稱的數叫復名數。
10. 小學數學知識點全集除一二三年級外
整數部分:
十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中「一」是計數的基本單位。10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個「零」。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四捨五入法:求近似數,看尾數最高位上的數是幾,比5小就捨去,是5或大於5捨去尾數向前一位進1。這種求近似數的方法就叫做四捨五入法。
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。
小數部分:
把整數1平均分成10份、100份、1000份……這樣的一份或幾份是十分之幾、百分之幾、千分之幾……這些分數可以用小數表示。如1/10記作0.1,7/100記作0.07。
小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數
小數的讀法:整數部分整數讀,小數點讀點,小數部分順序讀。
小數的寫法:小數點寫在個位右下角。
小數的性質:小數末尾添0去0大小不變。化簡
小數點位置移動引起大小變化:右移擴大左縮小,1十2百3千倍。
小數大小比較:整數部分大就大;整數相同看十分位大就大;以此類推。
分數和百分數
■分數和百分數的意義
1、 分數的意義:把單位「 1」 平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「 1」 平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、 百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
3、 百分數表示兩個數量之間的倍比關系,它的後面不能寫計量單位。
4、 成數:幾成就是十分之幾。
■分數的種類
按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數
■分數和除法的關系及分數的基本性質
1、 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、 由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
■約分和通分
1、 分子、分母是互質數的分數,叫做最簡分數。
2、 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。
3、 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
4、 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
5、 通分的方法:先求出原來幾個分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
■倒 數
1、 乘積是1的兩個數互為倒數。
2、 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
3、 1的倒數是1,0沒有倒數
■分數的大小比較
1、 分母相同的分數,分子大的那個分數就大。
2、 分子相同的分數,分母小的那個分數就大。
3、 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。
4、 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。
■百分數與折數、成數的互化:
例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。
■納稅和利息:
稅率:應納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規定按年或按月計算。
利息的計算公式:利息=本金×利率×時間
百分數與分數的區別主要有以下三點:
1.意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說「一段繩子長為20%米。」因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數不僅 可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕 米等。
2.應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3.書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。
數的整除
■整除的意義
整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b整除(也可以說b能整除a)
除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。
■約數和倍數
1、如果數a能被數b整除,a就叫b的倍數,b就叫a的約數。2、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。3、一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
■奇數和偶數
1、能被2整除的數叫偶數。例如:0、2、4、6、8、10……註:0也是偶數 2、不能被2整除的數叫基數。例如:1、3、5、7、9……
■整除的特徵
1、能被2整除的數的特徵:個位上是0、2、4、6、8。
2、能被5整除的數的特徵:個位上是0或5。
3、能被3整除的數的特徵:一個數的各個數位上的數之和能被3整除,這個數就能被3 整除。
■質數和合數
1、一個數只有1和它本身兩個約數,這個數叫做質數(素數)。
2、一個數除了1和它本身外,還有別的約數,這個數叫做合數。
3、1既不是質數,也不是合數。
4、自然數按約數的個數可分為:質數、合數
5、自然數按能否被2整除分為:奇數、偶數
■分解質因數
1、每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。
2、把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
3、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。公因數只有1的兩個數,叫做互質數。幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。
4、特殊情況下幾個數的最大公約數和最小公倍數。(1)如果幾個數中,較大數是較小數的倍數,較小數是較大數的約數,則較大數是它們的最小公倍數,較小數是它們的最大公約數。(2)如果幾個數兩兩互質,則它們的最大公約數是1,小公倍數是這幾個數連乘的積。
■奇數和偶數的運算性質:
1、相鄰兩個自然數之和是奇數,之積是偶數。
2、奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,
奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。
整數、小學、分數四則混合運算
■四則運算的法則
1、加法a、整數和小數:相同數位對齊,從低位加起,滿十進一b、同分母分數:分母不變,分子相加;異分母分數:先通分,再相加
2、減法a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減,退一當十再減b、同分母分數:分母不變,分子相減;異分母分數:先通分,再相減
3、乘法a、整數和小數:用乘數每一位上的數去乘被乘數,用哪一位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡
4、除法a、整數和小數:除數有幾位,先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊b、甲數除以乙數(0除外),等於甲數除以乙數的倒數
■運算定律
加法交換律a+b=b+a
結合律(a+b)+c=a+(b+c)
減法性質a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交換律a×b=b×a
結合律(a×b)×c=a×(b×c)
分配律(a+b)×c=a×c+b×c
除法性質a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。
推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。
一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。
■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍。
被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍。
■利用積的變化規律和商不變規律性質可以使一些計算簡便。但在有餘數的除法中要注意余數。
如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被後的,所以還原成原來的余數應該是100。
簡易方程
■用字母表示數
用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。
■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成「•「或省略不寫。數與數相乘,乘號不能省略。
2、當1和任何字母相乘時,「 1」 省略不寫。
3、數字和字母相乘時,將數字寫在字母前面。
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式
■等式與方程
表示相等關系的式子叫等式。
含有未知數的等式叫方程。
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。
■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解。
求方程的解的過程叫解方程。
■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x。
■解方程的方法
1、直接運用四則運算中各部分之間的關系去解。如x-8=12
加數+加數=和 一個加數=和-另一個加數
被減數-減數=差 減數=被減數-差 被減數=差+減數
被乘數×乘數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=除數×商
2、先把含有未知數x的項看作一個數,然後再解。如3x+20=41
先把3x看作一個數,然後再解。
3、按四則運算順序先計算,使方程變形,然後再解。如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解。
4、利用運算定律或性質,使方程變形,然後再解。如:2.2x+7.8x=20
先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解。
比和比例
■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫「按比例分配」。
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語
數感和符號感
■在數學教學中發展學生的數感主要指,使學生具有應用數字表示具體的數據和數量關系的能力;能夠判定不同的算術運算,有能力進行計算,並具有選擇適當方法(心算、筆算、使用計算器)實施計算的經驗;能根據數據進行推論,並對數據和推論的精確性和可靠性進行檢驗,等等。
■培養學生的數感的目的就在於使學生學會數學地思考,學會用數學的方法理解和解釋現實問題。
■ 數感的培養有利於學生提出問題和解決問題能力的提高。學生在遇到問題時,自覺主動地與一定的數學知識和技能建立起聯系,這樣才有可能建構與具體事物相聯系 的數學模型。具備一定的數感是完成這類任務的重要條件。如,怎樣為參加學校運動會的全體運動員編號?這是一個實際問題,沒有固定的解法,你可以用不同的方 式編,而不同的編排方案可能在實用性和便捷性上是不同的。如,從號碼上就可以分辨出年級和班級,區分出男生和女生,或很快的知道一名隊員是參加哪類項目。
■ 數概念本身是抽象的,數概念的建立不是一次完成的,學生理解和掌握數的概念要經歷一個過程。讓學生在認識數的過程中,更多地接觸和經歷有關的情境和實例, 在現實的背景下感受和體驗會使學生更具體更深刻地把握數的概念,建立數感。在認識數的過程中,讓學生說一說自己身邊的數,生活中用到的數,如何用數表示周 圍的事物等,會讓學生感覺到數就在自己身邊,運用數可以簡單明了地表示許多現象。估計一頁書的字數,一本書有多少頁,一把黃豆有多少粒等,這些對具體數量 的感知與體驗,是學生建立數感的基礎,這對學生理解數的意義會有很大的幫助。
■無論在哪個學段,都應鼓勵學生用自己獨特的方式表示具體的情境中的數量關系和變化規律,這是發展學生符號感的決定性因素。
■引進字母表示,是學習數學符號、學會用符號表示具體情境中隱含的數量關系和變化規律的重要一步。盡可能從實際問題中引入,使學生感受到字母表示的意義。
第一,用字母表示運演算法則、運算定律以及計算公式。演算法的一般化,深化和發展了對數的認識。
第二,用字母表示現實世界和各門學科中的各種數量關系。例如,勻速運動中的速度v、時間t和路程s的關系是s=vt。
第三,用字母表示數,便於從具體情境中抽象出數量關系和變化規律,並確切地表示出來,從而有利於進一步用數學知識去解決問題。例如,我們用字母表示實際問題中的未知量,利用問題中的相等關系列出方程。
■字母和表達式在不同場合有不同的意義。如:
5=2x+1表示x所滿足的一個條件,事實上,x這里只佔一個特殊數的位置,可以利用解方程找到它的值;
Y=2x表示變數之間的關系,x是自變數,可以取定義域內任何數,y是因變數,y隨x的變換而變化;
(a+b)(a-b)=a-b表示一個一般化的演算法,表示一個恆等式;
如果a和b分別表示矩形的長和寬,S表示矩形的面積,那麼S=ab表示計算矩形面積公式,同時也表示矩形的面積隨長和寬的變化而變化。
■如何培養學生的符號感
要盡可能在實際問題情境中幫助學生理解符號以及表達式、關系式意義,在解決實際問題中發展學生的符號感。
必須要對符號運算進行訓練,要適當地、分階段地進行一定數量的符號運算。但是並不主張進行過繁的形式運算訓練。
學生的符號感的發展不是一朝一夕就可以完成的,而是應該貫穿於數學學習的全過程,伴隨著學生數學思維的提高逐步發展。
量的計算
■事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
■數+單位名稱=名數
只帶有一個單位名稱的叫做單名數。
帶有兩個或兩個以上單位名稱的叫做復名數
高級單位的數如把米改成厘米 低級單位的數如把厘米改成米
■只帶有一個單位名稱的數叫做單名數。如:5小時, 3千克 (只有一個單位的)
帶有兩個或兩個以上單位名稱的叫做復名數。如:5小時6分,3千克500克(有兩個單位的)
56平方分米=(0.56)平方米 就是單名數轉化成單名數
560平方分米=(5)平方米(60平方分米) 就是單名數轉化成復名數的例子.
■高級單位與低級單位是相對的.比如,"米"相對於分米,就是高級單位,相對於千米就是低級單位.
■常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
(11)長方體和正方體的體積都可以寫成底面積×高,計算公式v=sh
(12)圓柱的體積=底面積×高,計算公式v=s h
■1年12個月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,閏年2月29天
■閏年年份是4的倍數,整百年份須是400的倍數。
■平年一年365天,閏年一年366天。
■公元1年—100年是第一世紀,公元1901—2000是第二十世紀。
平面圖形的認識和計算
■三角形
1、三角形是由三條線段圍成的圖形。它具有穩定性。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。一個三角形有三條高。
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形。
2、任意四邊形的內角和是360度。
3、只有一組對邊平行的四邊形叫梯形。
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。
■圓
圓是平面上的一種曲線圖形。同圓或等圓的直徑都相等,直徑等於半徑的2倍。圓有無數條對稱軸。圓心確定圓的位置,半徑確定圓的大小。
■扇形 由圓心角的兩條半徑和它所對的弧圍成的圖形。扇形是軸對稱圖形。
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條窒息那叫做對稱軸。
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等。
■周長和面積
1、平面圖形一周的長度叫做周長。
2、平面圖形或物體表面的大小叫做面積。
3、常見圖形的周長和面積計算公式