當前位置:首頁 » 基礎知識 » 八年級下冊數學分段函數知識點
擴展閱讀
兒童攝影冬季如何贏利 2024-11-03 04:11:04
酷狗自帶歌詞在哪裡 2024-11-03 03:40:14

八年級下冊數學分段函數知識點

發布時間: 2022-08-15 09:02:34

Ⅰ 八年級數學分段函數圖像怎麼畫

第一個問題:當0≤x≤2時,y=5x的圖像怎麼畫?

首先,知道函數y=5x是正比例函數,它的圖像在x取全體實數時是一條直線。

當0≤x≤2時,y=5x的圖像是一條線段,那麼找到線段的端點就可以了。

取x=0,則y=0;再取x=2,則y=10.所以描點O(0,0)、A(2,10),連接OA即可。

第二個問題:當X>2時Y=4X+2的圖像怎麼畫?

首先,知道函數y=4x+2是一次函數,它的圖像在x取全體實數時是一條直線。

當x>2時,y=4x+2的圖像是一條射線(不包括端點),

那麼找到射線的端點和射線上另外任意一點就可以了。

取x=2,則y=10;再取(注意:在x>2范圍內)x=3,y=14.

描點A(2,10)和B(3,14),作射線AB即可。注意:端點A要化成空心點。

Ⅱ 初二一次函數的分段函數 要標准過程和題目

打車,在車行駛3千米內,收取起步價5元,加燃油費1元,超出的部分每1千米加4元;小明打車從家出發到博物館的路程為x千米,問小明到博物館要付多少車費?
解:設小明到博物館要付車費y元,由題目可知
在車行駛3千米內,收取起步價5元,加燃油費1元:y=5+1=6 當x<=3;
超出的部分每1000米加4元: y=(x-3)X4+5+1 當x>3;
所以得到分段函數
y=5+1=6 x<=3;
y=(x-3)X4+5+1 x>3

Ⅲ 八年級下冊數學的知識點有哪些

第十六章 分式
1. 分式的定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子 叫做分式。
分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零
2.分式的基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
3.分式的通分和約分:關鍵先是分解因式
4.分式的運算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
分式乘方法則: 分式乘方要把分子、分母分別乘方。
分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變為同分母分式,然後再加減
混合運算:運算順序和以前一樣。能用運算率簡算的可用運算率簡算。
5. 任何一個不等於零的數的零次冪等於1, 即 ;當n為正整數時,
6.正整數指數冪運算性質也可以推廣到整數指數冪.(m,n是整數)
(1)同底數的冪的乘法: ;
(2)冪的乘方: ;
(3)積的乘方: ;
(4)同底數的冪的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,並且分母中含未知數的方程——分式方程。
解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。
解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
解分式方程的步驟 :
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;(3)解整式方程;(4)驗根.
增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
列方程應用題的步驟是什麼? (1)審;(2)設;(3)列;(4)解;(5)答.
應用題有幾種類型;基本公式是什麼?基本上有五種: (1)行程問題:基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題. (2)數字問題 在數字問題中要掌握十進制數的表示法. (3)工程問題 基本公式:工作量=工時×工效. (4)順水逆水問題 v順水=v靜水+v水. v逆水=v靜水-v水.
8.科學記數法:把一個數表示成 的形式(其中 ,n是整數)的記數方法叫做科學記數法.
用科學記數法表示絕對值大於10的n位整數時,其中10的指數是
用科學記數法表示絕對值小於1的正小數時,其中10的指數是第一個非0數字前面0的個數(包括小數點前面的一個0)


第十七章 反比例函數
1.定義:
2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
5.反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

1、反比例函數的概念
一般地,函數 (k是常數,k 0)叫做反比例函數。反比例函數的解析式也可以寫成 的形式。自變數x的取值范圍是x 0的一切實數,函數的取值范圍也是一切非零實數。
2、反比例函數的圖像
反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x 0,函數y 0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數的性質
反比例函數

k的符號 k>0 k<0
圖像
y

O x

y

O x

性質 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k>0時,函數圖像的兩個分支分別
在第一、三象限。在每個象限內,y
隨x 的增大而減小。 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k<0時,函數圖像的兩個分支分別
在第二、四象限。在每個象限內,y
隨x 的增大而增大。

4、反比例函數解析式的確定
確定及誒是的方法仍是待定系數法。由於在反比例函數 中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數中反比例系數的幾何意義
如下圖,過反比例函數 圖像上任一點P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PM PN= 。


第十七章 反比例函數
1.定義:形如y= (k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k

2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。

Ⅳ 誰有北師大版《數學》八年級下冊知識點總結

北師大版《數學》(八年級上冊)知識點總結第一章 勾股定理 1、勾股定理七、有關中點四邊形問題的知識點:(1)順次連接任意四邊形的四邊中點所得

Ⅳ 我想請各位同學幫我歸納八年級下學期的數學知識點(滬教版)。

1、完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,

口決:首平方,尾平方,2倍乘積在中央;

2、結構特徵:

①公式左邊是二項式的完全平方;

②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

3、在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。

添括弧法則:添正不變號,添負各項變號,去括弧法則同樣

六、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n)。

2、在應用時需要注意以下幾點:

①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0。

②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的;當a<0時,a-p的值可能是正也可能是負的,如 ,

④運算要注意運算順序。

七、整式的除法

1、單項式除法單項式

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

2、多項式除以單項式

多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

八、分解因式

1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

2、因式分解與整式乘法是互逆關系。

因式分解與整式乘法的區別和聯系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘。

分解因式的一般方法:

第一種:提公共因式法

1、如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

2、概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

3、易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉。

第二種:運用公式法

1、如果把乘法公式反過來,就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法。

2、主要公式:

(1)平方差公式:

(2)完全平方公式:

3、易錯點點評:

因式分解要分解到底.如 就沒有分解到底.

4、運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號。

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍。

5、因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。

第三種:分組分解法

1、分組分解法:利用分組來分解因式的方法叫做分組分解法。

2、概念內涵:

分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.

3、注意: 分組時要注意符號的變化.

第四種:十字相乘法

1、對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.

2、二次三項式 的分解:

3、規律內涵:

(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同。

(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p。

4、易錯點點評:

(1)十字相乘法在對系數分解時易出錯;

(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確。

Ⅵ 分段函數的性質知識點

一次函數

一、定義與定義式:

自變數x和因變數y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx (k為常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b (k為任意不為零的實數 b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

(3)解這個二元一次方程,得到k,b的值。

(4)最後得到一次函數的表達式。

五、一次函數在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:(不全,希望有人補充)

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (註:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關系:

y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x ?) [僅限於與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關系:

h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x^2的圖像,

可以看出,二次函數的圖像是一條拋物線。

IV.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x= -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P( -b/2a ,(4ac-b^2)/4a )

當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)

V.二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax^2+bx+c,

當y=0時,二次函數為關於x的一元二次方程(以下稱方程),

即ax^2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式 頂點坐標對 稱 軸

y=ax^2(0,0) x=0

y=a(x-h)^2(h,0) x=h

y=a(x-h)^2+k(h,k) x=h

y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

Ⅶ 八年級下學期數學知識點

第1章 二次根式

二次根式屬於「數與代數」領域的內容,它是在學生學習了平方根、立方根等內容的基礎上進行的,是對七年級上冊「實數」「代數式」等內容的延伸和補充。二次根式的運算以整式的運算為基礎,在進行二次根式的有關運算時,所使用的運演算法則與整式、分式的相關法則類似;在進行二次根式的加減時,所採用的方法與合並同類項類似;在進行二次根式的乘除時,所使用的法則和公式與整式的乘法運演算法則及乘法公式類似。這些都說明了前後知識之間的內在聯系。
本章的主要內容有二次根式,二次根式的性質,二次根式的運算(根號內不含字母、不含分母有理化)。
一、教科書內容和教學目標
本章的教學要求。
(1)了解二次根式的概念,了解簡單二次根式的字母取值范圍;
(2)了解二次根式的性質;
(3)了解二次根式的加、減、乘、除的運演算法則;
(4)會用二次根式的性質和運演算法則進行有關實數的簡單四則運算(不要求分母有理化)。
本章教材分析。
課本在回顧算術平方根的基礎上,通過「合作學習」的三個問題引出二次根式的概念,並說明以前學的數的算術平方根也叫做二次根式。在例題和練習的安排上,著重體現三個方面的要求:一是求二次根式中字母的取值范圍;二是求二次根式的值;三是用二次根式表示有關的問題。
對於二次根式的性質,課本利用第4頁圖1-2給出的。該圖的含義是如果正方形的面積為,那麼這個正方形的邊長就是;反之,如果正方形的邊長為,那麼這個正方形的面積就是,因此就有。從而得出二次根式的第一個性質。至於第二個性質,可以通過學生的計算來發現,所以課本安排了一個「合作學習」,讓學生自己去發現和歸納。該節第一課時的重點在於對這兩個性質的理解和運用,例題和練習的設計就圍繞這兩個性質展開。第二課時是學習二次根式的另外兩個性質,課本安排兩組練習,意在讓學生通過自己的嘗試,與同學的合作交流來發現這兩個性質。通過兩個例題和一組練習,使學生知道運用二次根式的性質,可以簡化實數的運算,也可以對結果是二次根式的式子進行化簡。課本第9頁的「探究活動」既是對二次根式的運用,更在於培養學生的一種探究能力,觀察、發現、歸納等能力。
第1.3節二次根式的運算,包含了二次根式的加、減、乘、除四種運算以及簡單應用,課本安排了3個課時,逐步推進,逐漸綜合。第一課時側重於兩個(相當於兩個單項式)二次根式的乘除,其法則是從二次根式的性質得到的,比較自然。例1是對兩個運演算法則的直接運用,讓學生有一個對法則的熟悉和熟練過程;例2是一個結合實際問題的運用,其中有勾股定理和三角形的面積計算。第二課時是二次根式的加減和乘除混合運算,出現了類似單項式乘以多項式、多項式乘以多項式(包括乘法公式、乘方)、多項式除以單項式的運算。課本中沒有出現「同類二次根式」的概念,只是提到「類似於合並同類項」「相同二次根式的項」,這種類比的方法,學生是能夠理解的,也能夠與整式一樣進行運算。第三課時是二次根式運算的應用。例6的數字看上去比較復雜,其目的是為了二次根式的運算的應用;例7綜合運用了直角三角形的有關知識、圖形的分割、面積的計算等,其解答過程較長,也是對二次根式知識的綜合運用。
二、本章編寫特點
注重學生的觀察、分析、歸納、探究等能力的培養。
在本章知識的呈現方式上,課本比較突出地體現了「問題情境——數學活動——概括——鞏固、應用和拓展」的敘述模式,這種意圖大多通過「合作學習」 來完成。「合作學習」為學生創設了從事觀察、猜測、驗證交流等數學活動的機會。如第5頁先讓學生計算三組與的具體數值,再議一議與的關系,然後得出二次根式的性質「=」。二次根式的其他幾個性質,課本中也是採用類似的方法。在學習了二次根式的有關性質後,課本又設計了一個「探究活動」,通過化簡有關的二次根式,讓學生自己去發現規律、表示規律、驗證規律,並與同伴交流。所有這些都是教材編寫的一種導向,以引起教與學方式上的一些的改變。
注重數學知識與現實生活的聯系。
教材力求克服傳統觀念上學習二次根式的枯燥性,避免大量純式子的化簡或計算,適當穿插實際應用或賦予式子一些實際意義。無論是學習二次根式的概念,還是學習二次根式的性質和運算,都盡可能把所學的知識與現實生活相聯系,重視運用所學知識解決實際問題能力的培養。如二次根式概念的學習,課本通過三個實際問題來引入,其目的就是關注概念的實際背景與形成過程,克服機械記憶概念的學習方式。又如,課本第3頁,用二次根式表示輪船航行的的距離,第11頁求路標的面積,第21頁花草的種植面積問題等。特別是在二次根式的運算中,專門安排了一節內容學習二次根式運算的應用,例6選取的背景是學生熟悉的滑梯,例7選取的背景是學生感興趣的剪紙條,以及作業中的堤壩、快艇問題等等。
充分利用圖形,使代數與幾何有機結合。
對於數與代數的內容,教材重視有關內容的幾何背景,運用幾何直觀幫助學生理解、解決有關代數問題,是教材的一個編寫特點,也是對教學的一種導向。本章中,如二次根式與直角三角形有關邊的計算密切相關,課本在這方面選取了一定量的問題,既豐富了勾股定理的運用,又學習了二次根式的計算。又如二次根式的引入,課本以圖形作為條件,讓學生通過計算給出二次根式的概念;在學習二次根式的性質時,課本通過讓學生讀圖1-2,從正反兩方面來理解其含義,得出二次根式的性質。例題中結合圖形示意,幫助學生理解問題,解決問題;作業或課本練習中設計一些圖形中有關線段長度的計算;通過方格、直角坐標系來畫三角形、確定點的位置等等。課本在安排二次根式的運算在日常生活和生產實際中的應用時,所選取的問題也在於體現學生所學知識之間的聯系,感受所學知識的整體性,不斷豐富學生解決問題的策略,提高解決問題的能力。
三、教學建議
注意用好節前語。
本章的節前語不多,但都緊密結合本節學習的內容,提出一個具體的問題。教學中可以利用它們來創設問題情境,引入課題。如第1.1節「排球網的高AD為2.43米,CB為米,你能用代數式表示AC的長嗎?」短短的幾句話,既是一個學生熟悉的問題情境,又是一個看似熟悉但又具有一定的挑戰懷,與數學學習相聯系的問題,教師可以由此提出一個與本節課學習有關的問題。教學中不應忽視這種作用。
注意把握教學難度。
與以往的教材相比,二次根式已降低了要求。如運用二次根式的性質將二次根式化簡,只要求簡單的,不要出現過於復雜的式子,並且明確根號內不含字母。對二次根式的四則運算,也僅局限於簡單的,根號內不含字母,教學中不需補充超出課本題目要求的問題。當然對不同層次的學生,應該體現一定的彈性。課本第15頁的作業題中的第7,8題,還可以藉助於計算器進行計算。
充分運用類比的方法。
二次根式的運算以整式的運算為基礎,其法則、公式都與整式的類似,特別是二次根式的加減,課本沒有提出同類二次根式的概念,完全參照合並同類項的方法;二次根式的乘除、乘方運算類似於整式的乘除、乘方運算。因此對於二次根式的四則運算的教學應充分運用類比的方法,讓學生理解其算理和演算法,提高運算能力。
第2章 一元二次方程

一、教科書內容和課程學習目標
(一)教科書內容
本章包括三節:
2.1 一元二次方程;
2.2一元二次方程的解法;
2.3一元二次方程的應用。
其中2.1節是全章的基礎部分,2.2節是全章的重點內容,2.3節是知識應用和引申的內容。另外,閱讀材料介紹了一元二次方程的發展,讓學生了解數學的發展史。
(二)本章的知識結構

(三)課程目標
(1)了解一元二次方程的概念,會用直接開平方法解形如(b≥0)的方程;
(2)理解配方法,會用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程,使學生能夠根據方程的特徵,靈活運用一元二次方程的各種解法求方程的根。
(3)體驗用觀察法、畫圖或計算器等手段估計方程的解的過程。
(4)能夠根據具體問題中的數量關系,能夠列出一元二程方程解應用題,能夠發現、提出日常生活、生產或其他學科中可利用一元二次方程來解決的實際問題,並正確地用語言表達問題及解決過程。體會方程是刻畫現實世界的一個有效的數學模型。
(5)結合教學內容進一步培養學生邏輯思維能力,對學生進行辯證唯物主義觀點的教育,通過一元二次方程的教學,使學生進一步獲得對事物可以轉化的認識。
(四)課時安排
2.1 一元二次方程…………………………………………………………2課時
其中:一元二次方程的概念……………………1課時
因式分解法解一元二次方程……………1課時
2.2一元二次方程的解法………………………………………………4課時
其中:開方法、配方法………………………2課時
公式法…………………………………2課時
2.3一元二次方程的應用………………………………………………2課時
小結、目標與評定………………………………………………………2課時
二、編寫指導思想與特點
方程教學在中學數學教學中佔有很大的比例,一元二次方程在初中代數中佔有重要地位。一方面,一元二次方程可以看成是前面所學過的有關知識的綜合運用,如有理數、實數的概念和整式、分式、開平方等的運算,一元一次方程、一元一次方程組解法等知識,在本章都有應用。從數學角度看,這一章的學習有一定難度,如果前面某個環節薄弱或知識點有問題,就會給本章的學習帶來困難,因此,這一章的教學是對以前所學的有關知識的檢驗,又是一次復習與鞏固。當然,一元二次方程知識也是前面所學知識的繼續和發展,尤其是方程方面知識的深入和發展。
本章的主要內容是一元二次方程的解法和應用,課本首先引入一元二次方程的概念,從實數的性質,將分解成為兩個一次因式相乘積為零的一元二次方程轉化為兩個一元一次方程入手,介紹了利用因式分解法解一元二次方程的方法,體現了數學的轉化思想。接著課本首先從數的開平方的知識出發,直接講開平方法,然後依次介紹了配方法和公式法。在講述公式法的同時,課本特別給出了利用計算器解一元二次方程的解法示例,以揭示技術發展給數學學習帶來的影響,這也是一種新的嘗試。同時,以建立數學模型為主要著力點介紹了一元二次方程的應用,並在例題的設置上充分考慮了圖表、立體圖形、物體運動和經濟活動中的問題背景,力圖使學生在現實的環境中學習數學。
這一章是全書乃至整個初中代數的一個重點內容。因為這一部分內容既是對以前所學內容的總結、鞏固和提高,又是以後學習的知識基礎。因此這一章可以說是起到了承上啟下的作用。高中階段的指數方程、對數方程及三角方程,無非就是指數、對數、三角函數的有關知識與一元一次方程、一元二次方程的綜合而已。初中代數中的不少主要技能、解題方法以及一些常用的數學思想方法,在本章都有所體現。例如,換元法、因式分解法、配方法等。另外,從具體到抽象的概括能力、邏輯推理能力等等在本章也有體現。可以說,無論從基礎知識還是基本技能看,這一章都佔有重要的地位。在本章的內容中,應以一元二次方程的解法,特別是公式法作為重點。
三、教材體現的數學思想方法
本章從內容上看是初中代數的重點,從數學思想方法方面來看,也是初中數學中比較全面體現的一章。
1.方程的思想
方程本身就提供了一種重要的數學思想方法,這一點在一元二次方程中體現的更為充分。學習方程不僅為進一步學習其他知識打下基礎,不僅可用於解決一些實際問題,而且在更廣泛的意義上講,通過方程可以溝通已知與未知之間的聯系,從而由解方程就可以使問題得以解決,通常稱之為方程思想。方程思想作為一種數學思想,在數學發展史上有重要作用,對求解數學問題來說也有重要的意義。
2.公式解法
一元二次方程的公式解法在數學思想方法上有重要意義。首先,公式法是人們所知的多次方程的第一種公式(根式)解,它為以後進行公式解的研究開辟了道路,並且是引起近似代數的起源問題之一,在數學的學習中也有重要意義;其次,公式法解體現了數學中的運算元的思想,將數學問題進行抽象化、符號化、程序化,這是數學發展的重要的途徑。
3.分類討論的數學思想
一元二次方程求根公式中,涉及開方問題,即對要實施開平方,而前面已經學過負數沒有平方根。因此的狀態就決定了一元二次方程根的狀態。必須對的符號進行討論。分類討論的數學思想是一種極為重要的數學思想方法,教材中對Δ=的三種分類討論隱含在課堂教學之中,通過「想一想」讓學生自然地得到結論,降低由於數學思想上的要求所帶來的學習上的難度,這是一種合理的處理方法。實際上,判別式的討論是不解方程而對方程的根進行定性研究的重要指標。在研究二次函數的圖象和性質等方面有重要意義,在研究二次曲線的問題時有重要地位。判別式實質上是利用方程的系數研究方程的性質,是一種以局部研究探求具體性質的方法。找一種關鍵性的數量關系去定性地研究一類對象,也是一種常見的數學思想方法。
4.轉化(化歸)的數學思想
在本章中更突出地表示出「轉化」的思想方法。如利用因式分解法解一元二次方程就是將一元二次方程轉化為兩個一元一次方程。嚴格地說,轉化的思想是數學中認識和掌握新知識的重要途徑,掌握這種方法,可以提高學生的數學能力,拓展學生數學知識。如換元法就是一種很重要的轉化思想,這在本章也有不少的體現。
四、教材處理
關於教材處理,按教材內容的安排及課程標準的要求,分三部分進行分析:
1.一元二次方程
本節包括一元二次方程的概念、因式分解法解一元二次方程,這一單元是本章的基礎,教材兩個問題中引入了一元二次方程的概念,一個問題是學生所熟悉的正方形和長方形的面積,另一個問題是從報紙上公布的統計數據,教學的重點是對方程的一般形式的認識和對方程解的理解,在此基礎上,引入用因式分解法求一元二次方程解的方法,將這種解安排在此處,其目的是為了加強學生對學習方程目的的理解,並為後續通過轉化求方程解奠定思想基礎。
2.一元二次方程的解法
本節是本章的核心內容,主要是一元二次方程的各種解法。其中的一元二次方程的配方法和應用一元二次方程知識理解應用問題是重點,而這兩個重點又是教學過程中的難點。一元二次方程的解法,尤其是公式法是學好本章的關鍵。因此,本節又是全章的重點,是學好本章的基礎。
一元二次方程的解法,課本介紹了四種,即直接開平方法、配方法、公式法及因式分解法。
直接開平方法適用於(b≥0)模式的方程。實際上,給出的一般方程只要存在實根,就可以用配方法轉化為的形式。例如,課本中將方程轉化為,因此配方法是直接開方法的延伸,而直接開平方法是配方法的基礎。
在配方法解一元二次方程的基礎上,很自然地推出一元二次方程的求根公式,實際上就是對一般形式(a≠0)的一元二次方程實施配方法的結果。
對於三種解法,公式法可以是一種「萬能」方法,只要△=≥0,將系數a,b,c代入公式即可求解。在教學中注意一元二次方程中的a≠0的條件。在配方時應強調方程兩邊同時加上「一次項系數之半的平方」或在左端加上「一次項系數之半的平方」再減去「一次項系數之半的平方」,實質上是方程的一種同解變形,這是必須反復訓練方可達到學生熟練進行配方的目的,它也是推導求根公式的基礎。
對△=的討論,首先要滲透分類討論的思想,另外,對△==0的情況,一定要強調有兩個相等的實根:這與方程根的理論一致,學生開始會認識只有一根,要反復強調,以糾正這種不正確的或說是不嚴密的結論。對△=<0的情況,不能說成方程無解,而應強調方程無實數根或在實數范圍內無解,強調數域是為今後在高中討論有復根的情況埋下伏筆。理論上的證明見教師用書。
關於一元二次方程根與系數的關系,實際上,求根公式就體現了根與系數的關系,由於課程標准中沒有涉及,但這部分內容對於今後的學習是很重要的,在教學中可以作為探索性學習的內容,讓學生自己進行探索並得出結論。
3.一元二次方程的應用
列方程解應用問題,前面一元一次方程的應用已學習過相關的知識,但是列一元二次方程解應用題仍然是難點,其原因是數量關系比較復雜且隱蔽;應用題所反映的實際背景比較復雜而學生又不太熟悉;所列方程也逐步復雜。主觀上學生一開始受算術解法思維的定勢影響,缺乏廣泛的社會經濟生產和生活以及相關學科方面的知識,理解文字語言和數學語言等方面的能力較差。
對於求解應用題,若從思想方法角度來看,列方程解應用題屬於數學模型法,其中方程應用題求解,大體上都是這樣六個步驟:①審題,理解題意,明確題中涉及幾個量,有幾個是已知量,有幾個是未知量,它們之間有什麼關系等等;②設元,根據題目要求,選擇合適的未知數,又分為直接設元法、間接設元法。同時還要考慮設幾個未知數為宜;③列式,分析題目中量與量的關系,關鍵是找出題目中的相等關系,這時,要注意挖掘題目中的那些隱蔽的相等關系,有時,又要輔之使用圖示法、列表法等一些直觀手段;④求解;⑤檢驗,既要檢驗得到的解是否符合原方程或原方程組,又要檢驗所得的解對實際問題是否有意義;⑥作答,寫出正確合理的答案。在教學中可以結合問題解決的策略,讓學生主動參與,自主建構和合作學習,體會數學建模的基本思想與方法。

(金克勤)

第3章 頻數及其分布

統計學是搜集數據、分析數據,並根據它獲得總體信息的科學.本套教材在七年級上冊安排了 「數據與圖表」,著重介紹了數據的收集、整理的初步方法;在八年級上冊安排了「樣本與數據分析初步」,通過對數據集中程度和離散程度的統計量的計算,初步了解了如何對數據的基本狀態進行分析.為了進一步分析、處理數據,供決策時參考,有時我們還要了解數據的分布情況,找出新的特徵數.「頻數及其分布」這一章就是解決了這一問題.「頻數及其分布」這部分內容在原總指浙江版義務教材中也有,但只是作為概率統計初步中的一小節.考慮到頻數、頻率、頻數直方圖、頻數折線圖與日常生活、自然、社會和科學技術領域的密切聯系,《數學課程標准》增加了這塊內容的份量.本套教材將這塊內容獨立設章的目的,一方面可用足夠的篇幅來更清楚、更詳細闡述,也是為每冊循序漸進地學習概率與統計知識所作的精心安排.
本章教學時間約需7課時 ,具體安排如下:
3.1 頻數和頻率 1課時
3.2 頻數分布 1課時
3.3 頻數的應用 3課時
復習、評估1課時,機動使用1課時,合計7課時.
一、教科書內容和課程教學目標
(1)本章知識結構框圖如下:

(2)本章教學目標如下:
目標類別
目標層次
知識點及相關技能 知識技能目標 過程性目標
了解 理解 掌握 靈活運用 經歷(感受) 體驗(體會) 探索





布 極差 √ √
頻數的概念 √ √
頻數分布表 √ √
頻率的概念 √ √
頻數分布的意義和作用 √ √
頻數分布直方圖 √ √
頻數分布折線圖 √ √
根據頻數分布直方圖估計平均數 √ √

(3)本章教學要求
① 通過實例,理解頻數、頻率的概念,了解頻數分布的意義和作用.
② 會計算極差,會對數據合理分組,並求出每一組的頻數、頻率,列出頻數分布表.
③ 會畫頻數分布直方圖和頻數分布折線圖,能根據頻數分布直方圖估計平均數,能根據數據處理的結果,作出合理的判斷和預測,並在這一過程中體會統計對決策的作用.
④ 通過畫直方圖、折線圖養成學生耐心細致的工作作風,實事求是的工作態度,善於觀察、分析問題的能力.
二、本章編寫特點
以《數學課程標准》為本,刪繁就簡、突出重要內容
畫頻數分布直方圖不採用傳統按部就班的逐步介紹的方法,步驟多、方法繁將會影響這個年齡段的學生學習興趣.事實上,如3.1節做一做,「下面給出以0.4 kg為組距,取2.75~3.15、3.15~3.55……為端點」;對連續型、離散型數據的不同處理等,裡面還有許多道理.不在繁瑣的具體枝節上糾纏,突出重要概念,讓學生體驗頻數、頻率的真實含義,理解頻數、頻率分布的意義和作用才是教學的真正目的,也是本章教材編寫的特點之一.
精心選擇實例,貼近學生生活,引起學生興趣
頻數、頻率本身就是處理實際問題,從實際中來,在解決實際問題的過程中引入概念.教材精心挑選、引入大量學生熟悉的例子,創設學生熟悉的情境,引起學生興趣,使學生能產生解決它的慾望.掃除一定程度上因為敘述事例的冗長而引起學生反感.如血型分布、運動鞋鞋號的選擇、學科成績、午餐等候時間、礦泉水質量等等都是學生身邊的事,學生熟悉且親切.同時也培養了學生從統計的角度思考與數據信息有關的問題,通過收集、分析數據的過程能初步作出合理的決策,提高學生處理問題、決策問題的能力.
重實踐操作,設計一定量的數學活動,在交流中增強數學應用意識
本章內容安排了一定量的實習操作性的活動,如「八年級男生、女生身高和所穿運動鞋的分布」「八年級學生跳繩次數的頻數分布」「八年級男生、女生體重數據的分布」「商場不同價格的彩電銷售情況」等,這些活動都需要學生分小組合作,事前精心設計策劃,調查廣泛接觸不太熟悉的人和事,希望學生通過這些活動認識現實世界中蘊含的大量的數學信息,數學與現實世界有著緊密聯系,增強學生的數學應用意識,也培養學生實際工作能力,從中獲得克服困難經歷或者體會獲得成功的喜悅.
三、教學建議
(1) 畫頻數分布直方圖的一般步驟是:①計算極差;②決定組數與組距.一般當數據在100個以內時,按照數據多少,常分為5~12組;組距是指每個小組的兩個端點之間的「距離」 , = 組距;③決定分點,為了避免有些數據本身落在分點上,常常將分點多取一位小數;④列表、劃記;⑤畫頻數分布直方圖.教師根據實際情況在講解中靈活應用,但不要完全在黑板上重復以上步驟,這樣違背了教材編寫的初衷.
(2) 利用頻數分布表、頻數直方圖、頻數折線圖來分析數據的一些特徵是教學的重點之一,教學中應該充分發揮學生的積極性,讓學生仔細地觀察、大膽地推測、合理地驗證.「統一訂購運動服、運動鞋,應注意哪些問題?」「校方安排學生多長的午餐時間為宜?」「估計魚塘中有多少條魚」「分析男生、女生游泳項目成績差異」等等,不像原來數學題有唯一標准答案,應鼓勵學生各抒已見,最後在充分討論的基礎上形成比較一致的意見.這是與人交流、勇於探索、比較清晰表達自己觀點的重要方式,也是新課程數學教學的一個重要方面,教師可視具體情況在本章教學中盡量體現.
(3)計算繁瑣,聯系實際緊密是本章的主要特點.除了課本提供的範例外,教學中教師可根據實際情況進行適當補充.同時教師還應該充分利用多媒體預先製作好一些教具,不要使課堂上寶貴的時間浪費在抄寫、繪圖上面.
四、本章教學中應注意的問題
(1)數據有「連續型」與「離散型」兩種,對離散型數據,如課本第51頁的血型分組一般比較容易,對離散型數據分組不唯一,僅是根據經驗,不同的分組一般得到的結論也有所差別,但只要合理均認為正確.
(2)進行實踐活動時,要注意有些問題可能涉及學生的個人隱私,如較胖的女同學不願意論及自己的體重,她認為公開自己的體重是侵犯了個人隱私權;一分鍾跳繩次數比較少的同學也可能覺得沒面子而出現一些不愉快事情.針對這些情況任課教師應有充分的思想准備,採取迴避或選擇一些合適的同學或選擇另外適當的數據作調查對象等辦法.我們的目的是通過一些實踐活動在交流中培養互相合作的精神,與人合作中體會愉快,用數學知識解決實際問題中,增強應用數學的自信心.不要因為個別特殊原因干擾整個教學計劃.
(3)直方圖的縱坐標與橫坐標一般來說有不同的單位,每個單位的具體長度應在比較中進行選擇.最終的要求是畫出來的圖形比較美觀,能清楚反映分布情況、及變化趨勢.課本所採用畫折線 的辦法就是避免圖形畫在極端的位置.在不影響整個圖形所反映基本特徵的情況下,使頻數直方圖或頻數折線圖更加美觀.也可以採用將學生所畫的圖比較展覽的辦法,讓學生在交流中取長補短,互相吸收別人好的經驗,來完善自己畫圖技能.

(王利明)
命題與證明

Ⅷ 八年級下北師大版數學知識點

正好我今年教八年級數學。沒有時間自己整理,從網上下載的,我看不錯,你借鑒一下。
北師大版初中數學定理知識點匯總
八年級(下冊)
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1. 能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式 解集 圖示 敘述語言表達

x>b 兩大取較大

x>a 兩小取小

a<x<b 大小交叉中間找

無解 在大小分離沒有解
(是空集)

第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:

¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:

※3. 規律內涵:
(1)理解:把 分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.

第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱 為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.

※4. 一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1. 分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.

第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成 .
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1. 注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
※1. 相似三角形的判定方法:
一般三角形 直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例. ①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 // l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形; 這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.

第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3. 數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4. 有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.

(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)