⑴ 高考數學也像中考一樣,每到題考的知識點都基本固定的嗎如果是,那每到題都考什麼知識點。
選擇填空不一定,大題就是固定的,三角函數,概率,空間幾何,數列,解析幾何,導數
⑵ 高考的數學考點有哪些
高考的數學考點有:
1、【數列】&【解三角形】
數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來,2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。
數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。
2、【立體幾何】
高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。
3、【概率】
高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。
4、【解析幾何】
高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。
5、【導數】
高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。
⑶ 高考必考數學考點
高考數學考點分布高考數學重點必考知識點總結。高考數學考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。
一、高考數學必考題型之函數與導數
考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
函數與導數單調性
⑴若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
⑵若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。
二、高考數學必考題型之幾何
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點在此平面內
公理2:過不在同一條直線上的三點,有且只有一個平面
公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
公理4:平行於同一條直線的兩條直線互相平行
定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那麼這兩個角相等或互補
判定定理:
如果平面外一條直線與此平面內的一條直線平行,那麼該直線與此平面平行「線面平行」
如果一個平面內的兩條相交直線與另一個平面都平行,那麼這兩個平面平行「面面平行」
如果一條直線與一個平面內的兩條相交直線都垂直,那麼該直線與此平面垂直「線面垂直」
如果一個平面經過另一個平面的垂線,那麼這兩個平面互相垂直「面面垂直」
三、高考數學必考題型之不等式
①對稱性
②傳遞性
③加法單調性,即同向不等式可加性
④乘法單調性
⑤同向正值不等式可乘性
⑥正值不等式可乘方
⑦正值不等式可開方
⑧倒數法則
四、高考數學必考題型之數列
(1)理解數列的概念,了解數列通項公式的意義了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題。
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,井能解決簡單的實際問題。
五、高考應試技巧
技巧一提前進入「角色」
考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、准考證等。
提前半小時到達高考考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入「角色」讓大腦開始簡單的數學活動。回憶一下高考數學常用公式,有助於高考數學超常發揮。
技巧二情緒要自控
最易導致高考心理緊張、焦慮和恐懼的是入場後與答卷前的「臨戰」階段,此間保持心態平衡的方法有三種
①轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。
②自我安慰法:如「我經過的考試多了,沒什麼了不起」等。
③抑制思維法:閉目而坐,氣貫丹田,四肢放鬆,深呼吸,慢吐氣,如此進行到高考發卷時。
技巧三摸透「題情」
剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服「前面難題做不出,後面易題沒時間做」的有效措施,也從根本上防止了「漏做題」。
高考數學必考知識點從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩定,使高考數學能夠超常發揮。
技巧四信心要充足,暗示靠自己
高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防「大意失荊州」。面對偏難的題,要耐心,不能急。
考試全程都要確定「人家會的我也會,人家不會的我也會」的必勝信念,使自己始終處於最佳競技狀態
技巧五數學答題有先有後
1、答題應先易後難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。
2、先高分後低分,在高考數學考試的後半段時要特別注重時間,如兩道題都會做,先做高分題,後做低分題,對那些拿不下來的數學難題也就是高分題應「分段得分」,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發揮的幾率。
⑷ 高考數學考點有哪些
函數與不等式、數列、解析幾何、平面下向量的數量積、一元二次不等式、直線方程、指數與對數、函數與方程、線性規劃、流程圖、基本演算法語句、充分條件、必要條件、簡單的邏輯連接詞。考數學對數學基礎知識考察既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
高考數學考點答題技巧
函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用三合一定理。如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法。
面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸。選擇與填空中出現不等式的題目,優選特殊值法。
求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。
恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏。
圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法。使用韋達定理必須先考慮是否為二次及根的判別式。
⑸ 高考數學都是綜合知識點題嗎
高考數學就沒有哪個知識點是單獨考的,高中數學涵蓋知識點很多,而題量有限,基本上都是考點綜合在一起出題。
比如集合選擇題,一般會和函數放在一起考。
而函數選擇題或者填空題,一般包括指數對數冪函數知識點,另外還包括考數形結合,分類討論,轉化與化歸思想等方法?
所以說,基礎打牢很重要,基礎牢固是低檔和中檔難度題答對的保證,是高檔難度題的前提。
總之,考綱要求的知識點,都要掌握,適當的刷題也必不可少,數學沒有投機取巧!踏踏實實,加油吧
⑹ 高考數學知識點有哪些
高考數學知識點主要有集合與邏輯,函數,導數,三角函數,平面向量,數列,不等式,立體幾何,解析幾何,圓錐曲線,等
⑺ 高中數學有哪些重點知識點,該如何把握
幾何空間,排列組合,兩元三次方程,集數以及參數,真假命題,這些都是高中數學所要學習的重點知識內容,在課堂上要做好相應的筆記,課後多做題,多復習多練習。
⑻ 高考數學都有哪些知識點
第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數
第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題
第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題
第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小是高考的重點和難點
第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題
第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離
第七,解析幾何是高考的難點,運算量大,一般含參數
高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、並形成記憶,形成技能。以不變應萬變
⑼ 高考數學必考知識點歸納有哪些
高考數學必考知識點歸納:
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
⑽ 數學高考必考知識點有哪些
數學高考必考知識點有:
1、常用名稱和術語:坡角、仰角、俯角、方位角、方向角。
2、軌跡方程的相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然後代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。3、等比數列爆強公式:S(n+m)=S(m)+q2mS(n)。
4、三次函數曲線其實是中心對稱圖形。它有一個對稱中心,求法為二階導後導數為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數界定。另外,必有唯一一條過該中心的直線與兩旁相切。
5、復合函數奇偶性:內偶則偶,內奇同外。