當前位置:首頁 » 基礎知識 » 冀教版初一數學知識點
擴展閱讀
古代名著有哪些經典 2024-11-02 18:27:40
靈貓傳的歌詞是什麼 2024-11-02 18:27:35

冀教版初一數學知識點

發布時間: 2022-08-13 14:19:09

㈠ 衡水教材是人教版還是冀教版

衡水教材人教版和冀教版均有使用,衡水地區教材版本說明如下:

1、衡水地區小學教材版本:語文、數學使用人教版教材,英語使用冀教版教材。

解讀:在衡水小學教材版本難度上,數學、語文差異不大,英語難度較小,歷年外地學生轉入衡水小學或參加衡水地區小升初考試,英語成績往往高於衡水本地學生分數;但是在衡水小學數學方面,衡水地區小學注重小學階段的大量刷題、以及中高難度題型的練習,使衡水地區小學數學平均成績優於外地學生。

2、衡水地區初中教材版本:除數學使用冀教版外,其他科目使用人教版版本。

解讀:中考是以省為單位,河北衡水周邊縣市多為人教版,但是在初中整體知識點的覆蓋面上,初中人教版數學和初中冀教版數學知識覆蓋面相同,區別在於知識點的學習順序不同,以初一數學為例,3/4的知識點是一樣的,但是人教版部分初二的知識在冀教版初一進行學習,就難度整體而言,冀教版難度偏大一些。

冀教版和人教版區別:

1、書本的出版社不同:人教版是人民教育出版社出版的課本,冀教版是河北教育出版社出版的課本。

2、書本適用的范圍不同:人教版的書本是針對全國范圍內編寫的,所以在很多地方的學校裡面都能看到。冀教版是針對河北范圍內的學生編寫的,在河北省以外的學校沒有那麼普遍存在,主要使用於河北地區的孩子教材。

3、教材的內容不同:人教版的教材內容更加普適化。冀教版的教材內容更多因河北地區本身歷史文化所決定,比較獨特。

4、編寫的機構不同:冀教版是河北省教育廳編寫的,人教版是國家編寫的,主要內容差不多。

5、內容的順序不同:版本不同,所以知識的編排會不同,課本中的內容在順序上也是不同的,其他的知識體系基本都是相同的。

㈡ 冀教版初中數學知識點易錯題大全。。

一、數與式
例題: 的平方根是.(A)2,(B) ,(C) ,(D) .
例題:等式成立的是.(A) ,(B) ,(C) ,(D) .
二、方程與不等式
⑴字母系數
例題:關於 的方程 ,且 .求證:方程總有實數根.
例題:不等式組 的解集是 ,則 的取值范圍是.
(A) ,(B) ,(C) ,(D) .
⑵判別式
例題:已知一元二次方程 有兩個實數根 , ,且滿足不等式 ,求實數的范圍.
⑶解的定義
例題:已知實數 、 滿足條件 , ,則 =____________.
⑷增根
例題: 為何值時, 無實數解.
⑸應用背景
例題:某人乘船由 地順流而下到 地,然後又逆流而上到 地,共乘船3小時,已知船在靜水中的速度為8千米/時,水流速度為2千米/時,若 、 兩地間距離為2千米,求 、 兩地間的距離.
⑹失根
例題:解方程 .
三、函數
⑴自變數
例題:函數 中,自變數 的取值范圍是_______________.
⑵字母系數
例題:若二次函數 的圖像過原點,則 =______________.
⑶函數圖像
例題:如果一次函數 的自變數的取值范圍是 ,相應的函數值的范圍是 ,求此函數解析式.
⑷應用背景
例題:某旅社有100張床位,每床每晚收費10元時,客床可全部租出.若每床每晚收費再提高2元,則再減少10張床位租出.以每次這種提高2元的方法變化下去,為了投資少而獲利大,每床每晚應提高_________元.
四、直線型
⑴指代不明
例題:直角三角形的兩條邊長分別為 和 ,則斜邊上的高等於________.
⑵相似三角形對應性問題
例題:在 中, , , 為 上一點, ,在 上取點 ,得到 ,若兩個三角形相似,求 的長.
⑶等腰三角形底邊問題
例題:等腰三角形的一條邊為4,周長為10,則它的面積為________.
⑷三角形高的問題
例題:等腰三角形的一邊長為10,面積為25,則該三角形的頂角等於多少度?
⑸矩形問題
例題:有一塊三角形 鐵片,已知最長邊 =12cm,高 =8cm,要把它加工成一個矩形鐵片,使矩形的一邊在 上,其餘兩個頂點分別在三角形另外兩條邊上,且矩形的長是寬的2倍,求加工成的鐵片面積?
⑹比例問題
例題:若 ,則 =________.
五、圓中易錯問題
⑴點與弦的位置關系
例題:已知 是⊙O的直徑,點 在⊙O上,過點 引直徑 的垂線,垂足為點 ,點 分這條直徑成 兩部分,如果⊙O的半徑等於5,那麼 = ________.
⑵點與弧的位置關系
例題: 、 是⊙O的切線, 、 是切點, ,點 是上異於 、 的任意一點,那麼 ________.
⑶平行弦與圓心的位置關系
例題: 半徑為5cm的圓內有兩條平行弦,長度分別為6cm和8cm,則這兩條弦的距離等於________.
⑷相交弦與圓心的位置關系
例題:兩相交圓的公共弦長為6,兩圓的半徑分別為 、5,則這兩圓的圓心距等於________.
⑸相切圓的位置關系
例題:若兩同心圓的半徑分別為2和8,第三個圓分別與兩圓相切,則這個圓的半徑為________.

練習題:
一、容易漏解的題目
1.一個數的絕對值是5,則這個數是_________;__________數的絕對值是它本身.( ,非負數)
2._________的倒數是它本身;_________的立方是它本身.( , 和0)
3.關於 的不等式 的正整數解是1和2;則 的取值范圍是_________.( )
4.不等式組 的解集是 ,則 的取值范圍是_________.( )
5.若 ,則 _________.( ,2, ,0)
6.當 為何值時,函數 是一個一次函數.( 或 )
7.若一個三角形的三邊都是方程 的解,則此三角形的周長是_________.(12,24或20)
8.若實數 、 滿足 , ,則 ________.(2, )
9.在平面上任意畫四個點,那麼這四個點一共可以確定_______條直線.
10.已知線段 =7cm,在直線 上畫線段 =3cm,則線段 =_____.(4cm或10cm)
11.一個角的兩邊和另一個角的兩邊互相垂直,且其中一個角是另一個角的兩倍少 ,求這兩個角的度數.( , 或 , )
12.三條直線公路相互交叉成一個三角形,現在要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有_______處?(4)
13.等腰三角形一腰上的高與腰長之比為 ,則該三角形的頂角為_____.( 或 )
14.等腰三角形的腰長為 ,一腰上的高與另一腰的夾角為 ,則此等腰三角形底邊上的高為_______.( 或 )
15.矩形 的對角線交於點 .一條邊長為1, 是正三角形,則這個矩形的周長為______.( 或 )
16.梯形 中, , , =7cm, =3cm,試在 邊上確定 的位置,使得以 、 、 為頂點的三角形與以 、 、 為頂點的三角形相似.( =1cm,6cm或 cm)
17.已知線段 =10cm,端點 、 到直線 的距離分別為6cm和4cm,則符合條件的直線有___條.(3條)
18.過直線 外的兩點 、 ,且圓心在直線 的上圓共有_____個.(0個、1個或無數個)
19.在 中, , , ,以 為圓心,以 為半徑的圓,與斜邊 只有一個交點,求 的取值范圍.( 或 )
20.直角坐標系中,已知 ,在 軸上找點 ,使 為等腰三角形,這樣的點 共有多少個?(4個)
21.在同圓中,一條弦所對的圓周角的關系是______________.(相等或互補)
22.圓的半徑為5cm,兩條平行弦的長分別為8cm和6cm,則兩平行弦間的距離為 _______.(1cm或7cm)
23.兩同心圓半徑分別為9和5,一個圓與這兩個圓都相切,則這個圓的半徑等於多少?(2或7)
24.一個圓和一個半徑為5的圓相切,兩圓的圓心距為3,則這個圓的半徑為多少?(2或8)
25. 切⊙O於點 , 是⊙O的弦,若⊙O的半徑為1, ,則 的長為____.(1或 )
26. 、 是⊙O的切線, 、 是切點, ,點 是上異於 、 的任意一點,那麼 ________.( 或 )
27.在半徑為1的⊙O中,弦 , ,那麼 ________.( 或 )
二、容易多解的題
28.已知 ,則 _______.(3)
29.在函數 中,自變數的取值范圍為_______.( )
30.已知 ,則 ________.( )
31.當 為何值時,關於 的方程 有兩個實數根.( ,且 ).
32.當 為何值時,函數 是二次函數.(2)
33.若 ,則 ?.( )
34.方程組 的實數解的組數是多少?(2)
35.關於 的方程 有實數解,求 的取值范圍.( )
36. 為何值時,關於 的方程 的兩根的平方和為23?( )
37. 為何值時,關於 的方程 的兩根恰好是一個直角三角形的兩個銳角的餘弦值?.( ).
38.若對於任何實數 ,分式 總有意義,則 的值應滿足______.( )
39.在 中, ,作既是軸對稱又是中心對稱的四邊形 ,使 、 、 分別在 、 、 上,這樣的四邊形能作出多少個?(1)
40.在⊙O中,弦 =8cm, 為弦 上一點,且 =2cm,則經過點 的最短弦長為多少?( cm)
41.兩枚硬幣總是保持相接觸,其中一個固定,另一個沿其周圍滾動,當滾動的硬幣沿固定的硬幣滾動一周,回到原來的位置,滾動的那個硬幣自轉的圈數為_______.(2)
三、容易誤判的問題:
1.兩條邊和其中一組對邊上的高對應相等的兩個三角形全等。
2.兩邊及第三邊上的高對應相等的兩個三角形全等。
3.兩角及其對邊的和對應相等的兩個三角形全等。
4.兩邊及其一邊的對角對應相等的兩個三角形全等。

㈢ 初一數學的知識點

不同版本學的內容不同,你學的什麼版本?至於學的哪些知識點,你看一下目錄就明白了。

㈣ 關於初一數學的所有知識點歸納,

初一數學概念
實數:
—有理數與無理數統稱為實數.
有理數:
整數和分數統稱為有理數.
無理數:
無理數是指無限不循環小數.
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數.
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸.
相反數:
符號不同的兩個數互為相反數.
倒數:
乘積是1的兩個數互為倒數.
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值.一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0.
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
⑵減法法則:減去一個數,等於加上這個數的相反數.
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0.
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0.
文體知識
1 記敘文文體知識要點
(1) 以記敘文為主要表達方式的文章叫記敘文.語言特點,生動,形象.
(2) 作品中所反映的生活和作者對生活的看法,就是記敘文的中心,也叫中心思想.中心思想是依靠人,事,景,物這些材料來表的.因而記敘文的材料必須為中心思想服務,做到中心明確,集中.
(3) 記敘文的順序主要有幾種:順敘,倒敘,插敘.
順敘:按事件的發生,發展結局的過程記敘. 倒敘:把事件的結局或某個最突出的片斷提到文章的開頭寫,然後再按時間順序寫事件的經過. 插敘:在記敘過程中,有時需要插入另一些有關的情節,然後再按著記敘原來的事情.
(4) 記敘文中的詳略安排應該是能突出中心的材料應該詳寫;與中心有關系,但是不很重要的材料,應該略寫;與中心無關的材料應該舍棄.這樣,才能使記敘的中心集中,鮮明,突出.
(5) 記敘文的樣式常見有:對現實生活中典型人物和事跡作具體報道的通訊.用文字語言和文學手法描述真人真事的特寫.記敘山川景物,旅途見聞為主的游記. 追憶本人或生活經歷和社會活動的回憶錄,傳記,訪問記等.它們共同特點是:所寫內容必須真實,不容許隨意誇大或縮小事實,更不能編造虛構,即要有真實性;對所寫的內容又要求作必要的加工.力求文章中心突出,形象鮮明,構思精巧
(6) 特寫是報告文學的一種樣式,它截取人物或事件的某個片斷,細致地加以描述.
(7) 傳記一般分兩類:一類記敘自己的生平;一類記敘他人的生平.傳記的主要特點是實錄,要求實事求是,不允許虛構誇張.傳記在表達上以記敘為主,也可以適當插入議論,描寫.傳記記敘的順序一般以時間為序.人物和人物故事的區別在於人物故事只要具體寫出人物的某個事件或某幾件事就行了.小傳則要求寫出人物的出生地,出生年月,主要經歷等.人物自傳的繁簡區別在於自傳可以根據需要採用不同寫法,可以寫自己全部經歷,也可以寫自己某個時期的經歷.
2 說明文文體知識要點
(1)以說明為主要表達方式,按一定的要求解說事物或事理的文章稱為說明文.說明文的語言特點:准確,平實,簡潔.
(2)說明事物的前提是抓住事物的特徵.所謂特徵就是事物間相互區別的標志.
(3)說明文的說明順序有:空間順序,時間順序,邏輯順序,(有總說後分說,先主要後次要,先原因後結果,由現象到本質,由性能到功用等)
(4)常用的說明方法有:分類別,作解釋,舉例子,打比方,作比較,用數字,列圖表.
(5)說明文按說明對象和內容分有:說明實體事物和說明抽象事理兩大類.說明文按寫作方法和表達方式分有:平實性說明文和文藝性說明文.
(6)平實性說明文和文藝性說明文的區別在於:平實性說明文純用說明的表達方式,語言朴實簡明,內容具體,切實使人讀了就能明白.如自然科學的各類教科書.科技信息資料,實驗報告,說明書等.文藝性說明文以說明為主,輔以敘述,描寫,抒情等多種表達方式,並常用藉助一些修辭方法,形象化地介紹事物或闡述事理,使讀者在獲得知識的同時,還能得到藝術的享受,這類說明文通常稱知識小品或科學小品.
(7)說明文的描寫和記敘文中的描寫區別:a 目的不同:記敘文中的描寫是為了「使人有所感,」;說明文的描寫是為了「使人有所知」.b 記敘文可以根據中心思想的需要,使用各種描寫方法起到多方面的作用.說明文的描寫則只能在說明事物的過程中,藉助某鍾形象化的手法,對事物的特徵作一些必要的描繪,主要是起到使說明的事物特徵更具體,更形象.c 記敘文中的描寫可以發揮藝術想像,可以誇張,渲染,而說明文中的描寫在務真求實的前提下進行語言加工,做到既形象生動,又真實可信.
3 議論文文體的知識要點
(1)生活中少不了議論,講道理,發表意見就是議論.以議論為主要表達方式的文章就是議論文.
(2)議論總要提出看法或主張,這種看法或主張就是論點,用來證明論點的材料就為論據,用論據來證明論點的過程即為論證過程.
(3)用以證明論點的材料有兩大類:事實材料(事實論據)即確鑿的事例;史實;統計數字等.理論材料(道理論據)即名人名言;警句;格言;科學原理;自然定律;馬列毛澤東思想.
(4)議論文的基本結構:提出問題;分析問題;解決問題.議論文的基本論證方法:擺事實,講道理.論證方式:立論,駁論.所謂立論就是正面闡述自己的觀點.駁論就是批駁錯誤的觀點.
(5)一事一議議論文的寫作特點:借事發表議論,就事說明道理.而從「事」到議.又必須理出並把握兩者的聯系點,才可順理成章地展開議論,這事「一事一議」的關鍵.
(6)議論文常見的有幾種樣式:社論,評論,學術論文,專題討論,雜感,隨筆以及側重1於議論性的講演詞,書信等.在以上樣式中,有理論性較強的,有文藝性較強的.

㈤ 初一數學全部知識點有哪些

一、正負數

1、正數:大於0的數。

2、負數:小於0的數。

3、正數大於0,負數小於0,正數大於負數。

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

二、有理數

1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

三、數軸

1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2、數軸的三要素:原點、正方向、單位長度。

3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

相反數的和為0 a+b=0 a、b互為相反數。

四、有理數的加減法

1、先定符號,再算絕對值。

2、加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

五、有理數乘法(先定積的符號,再定積的大小)

1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2、乘積是1的兩個數互為倒數。

㈥ 七年級上冊數學重點,把所有重要的知識點列出來,要簡潔點

初一數學知識點
第一章 有理數
1正數、負數、有理數、相反數、科學記數法、近似數
2數軸:用數軸來表示數
3絕對值:正數的絕對值是它本身;負數的絕對值是它的相反數;零的絕對值是零
4正負數的大小比較:正數大於零,零大於負數,正數大於負數,絕對值大的負數值反而小 。
5有理數的加法法則:
同號兩數相加,取相同的符號,並把絕對值相加;

絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去減小的絕對值;

互為相反數的兩數相加為零;

一個數加上零,仍得這個數。
6有理數的減法(把減法轉換為加法)

減去一個數,等於加上這個數的相反數。
7有理數乘法法則

兩數相乘,同號得正,異號得負,並把絕對值相乘;

任何數同零相乘,都得零。

乘積是一的兩個數互為倒數。
8有理數的除法(轉換為乘法)

除以一個不為零的數,等於乘這個數的倒數。
9有理數的乘方

正數的任何次冪都是正數;

零的任何次冪都是負數;

負數的奇次冪是負數,負數的偶次冪是正數。
10混合運算順序
(1) 先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如果有括弧,先做括弧內的運算,按照小括弧、中括弧、大括弧依次進行。

第二章 整式的加減

1 整式:單項式和多項式的統稱;

2整式的加減
(1) 合並同類項
(2) 去括弧

第三章 一元一次方程
1 一元一次方程的認識
2 等式的性質

等式兩邊加上或減去同一個數或者式子,結果仍然相等;

等式兩邊乘同一個數,或除以同一個不為零的數,結果仍相等。
3 解一元一次方程
一般步驟:去分母、去括弧、移項、合並同類項、系數化為一
第四章 圖形認識初步
1 幾何圖形:平面圖和立體圖
2 點、線、面、體
3 直線、射線、線段
兩點確定一條直線;
兩點之間,線段最短

4 角

角的度量度數

角的比較和運算

補角和餘角:等角的補角和餘角相等

初一下冊
第五章 相交線和平行線
1 相交線:對頂角相等
2 垂線

經過一點有且只有一條直線和已知直線垂直;

連接直線外一點與直線上各點的所有線段中,垂線段最短(垂線段最短)
3 平行線
平行公理:經過直線外一點,有且只有一條直線與已知直線平行;

若兩直線都與第三條直線平行,那麼這兩條直線也相互平行;
判定:同位角相等,兩直線平行;

內錯角相等,兩直線平行;

同旁內角互補,兩直線平行。
性質:兩直線平行,同位角相等,內錯角相等,同旁內角互補。
4 命題:判斷一件事情的語句
5 平移

第六章 平面直角坐標系
1 有序數對:(a,b)
2 平面直角坐標系、原點、橫軸、縱軸、象限
3簡單應用:用坐標表示位置;用坐標表示平移。

第七章 三角形
1 與三角形有關的邊:
三角形的邊、高、中線、角平分線、穩定性
2 與三角形有關的角
內角:三角形的內角和是180度
外角:三角形的一個外角等於與它不相鄰的兩個內角的和;

三角形的一個外角大於與它不相鄰的任何一個內角。
2 多邊形
內角:多邊形的內角和為(n-2)*180;
外角:多邊形的外角和為360度。

第八章 二元一次方程組

1 二元一次方程與二元一次方程組的介紹

2 二元一次方程組的解法

代入法 消元法(加減法)

3 二元一次方程組的實際應用
第九章 不等式和不等式組

1 不等式及其解集:含有不等關系號的式子;

2 不等式的性質

性質1 不等式的兩邊加減同一個數或式子,不等號的方向不變;

性質2 不等式兩邊乘或除以同一個正數,不等號的方向不變;

性質3 不等式的兩邊乘或除以同一個負數,不等號的方向改變。

3 一元一次不等式在實際問題中的應用

4 一元一次不等式組及其解法:大大取大;小小取小;大於大的,小於小的取兩邊,大於小的,小於大的去中間。

第十章 實數

1 平方根:正數有兩個平方根,它們互為相反數;

零的平方根是零;

負數沒有平方根;
正數算術平方根是正數;

零的算術平方根是零。

2 立方根:正數的立方根是正數;

負數的立方根是負數;

零的立方根是零。

3 實數:有理數和無理數的統稱。無理數即是無限不循環小數。

我也不知道你要多簡潔的,這算是比較全面的。。。

㈦ 初一的所有知識點數學

1.數軸

(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.

數軸的三要素:原點,單位長度,正方向.

(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)

(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大.

2.相反數

(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.

(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等.

(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正.

(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧.

3.絕對值

(1)概念:數軸上某個數與原點的距離叫做這個數的絕對值.

①互為相反數的兩個數絕對值相等;

②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數.

③有理數的絕對值都是非負數.

(2)如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:

①當a是正有理數時,a的絕對值是它本身a;

②當a是負有理數時,a的絕對值是它的相反數﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理數大小比較

(1)有理數的大小比較

比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小.

(2)有理數大小比較的法則:

①正數都大於0;

②負數都小於0;

③正數大於一切負數;

④兩個負數,絕對值大的其值反而小.

㈧ 初一數學到底有哪些重要重要的知識點

代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「• 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「• 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a× 應寫成 a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成 的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
有理數
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數 0和正整數;a>0  a是正數;a<0  a是負數;
a≥0  a是正數或0  a是非負數;a≤ 0  a是負數或0  a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0  a+b=0  a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;
(3) ; ;
(4) |a|是重要的非負數,即|a|≥0;注意:|a|•|b|=|a•b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

㈨ 初一上冊數學簡單講述知識點

第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

㈩ 初一數學的重點

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:
1、有理數
有理數:①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d﹤r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d﹥r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d﹥R+r ②兩圓外切 d=R+r③兩圓相交 R-r﹤d﹤R+r(R﹥r)
④兩圓內切 d=R-r(R﹥r) ⑤兩圓內含 d﹤R-r(R﹥r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

一、常用數學公式
公式分類 公式表達式
乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角