當前位置:首頁 » 基礎知識 » 考研數學學科知識點梳理
擴展閱讀
基礎子分部驗收有哪些 2024-11-02 06:11:22
初學基礎知識怎麼記憶 2024-11-02 06:02:34
獨立基礎如何算樁長 2024-11-02 06:02:27

考研數學學科知識點梳理

發布時間: 2022-08-12 00:25:42

❶ 考研數學到底考哪些內容應該如何准備

目前,統考的數學包括數學1,數學2和數學3,雖然統考數學的滿分都是150分,但是他們的難度和考試的范圍,以及所適用的專業是不同的。同學們在准備考研數學的時候,也應該有的放矢,有針對性地去復習,不可鬍子眉毛一把抓。


那麼具體應該怎樣操作呢?首先你可以自己總結或者是參考一些資料,去總結歷年的真題當中主要考察的范圍,然後有針對性地去復習,爭取花最少的時間,最少的精力,去獲得最高的分數。當你有更多的或者是更充足的時間的時候,才去復習那些分值較小的模塊。這也是有哲理依據的復習方法,系統優化方法。

結語:

總而言之,統考的數學包括數學1,數學2和數學3,在考試范圍當中,數學一中,高數佔56%,線代佔22%,概率論與數理統計佔22%,在數學二當中,高數佔78%,線代佔22%,概率論與數理統計在數學三當中各部分所佔比例與數學一相同,不做贅述,當然各模塊的難度也有區別,在上文當中已經交代。

同學們在備考之時一定要注重使用系統優化的方法,爭取以最小的精力,最少的時間去獲得最高的分數,當有更多的時間的時候再去復習那些分值較低的模塊。

❷ 考研數學的重難點有哪些

一、函數、極限、連續部分

極限的運演算法則、極限存在的准則(單調有界准則和夾逼准則)、未定式的極限、主要的等價無窮小、函數間斷點的判斷以及分類,還有閉區間上連續函數的性質(尤其是介值定理),這些知識點在歷年真題中出現的概率比較高,屬於重點內容,但是很基礎,不是難點,因此這部分內容一定不要丟分。
二、微分學部分
主要是一元函數微分學和多元函數微分學,其中一元函數微分學是基礎亦是重點。
一元函數微分學,主要掌握連續性、可導性、可微性三者的關系,另外要掌握各種函數求導的方法,尤其是復合函數、隱函數求導。微分中值定理也是重點掌握的內容,這一部分可以出各種各樣構造輔助函數的證明,包括等式和不等式的證明,這種類型題目的技巧性比較強,應多加練習。函數的凹凸性、拐點及漸近線,也是一個重點內容,在近幾年考研中常出現。曲率部分,僅數一考生需要掌握,但是並不是重點,在考試中很少出現,記住相關公式即可。
多元函數微分學,掌握連續性、偏導性、可微性三者之間的關系,重點掌握各種函數求偏導的方法。多元函數的應用也是重點,主要是條件極值和最值問題。方向導數、梯度,空間曲線、曲面的切平面和法線,僅數一考生需要掌握,但是不是重點,記憶相關公式即可。
三、積分學部分
一元函數積分學的一個重點是不定積分與定積分的計算。這個對於有些同學來說可能不難,但是要想用簡便的方法解答還是需要多花點時間學習的。在計算過程中,會用到不定積分/定積分的基本性質、換元積分法、分部積分法。其中,換元積分法是重點,會涉及到三角函數換元、倒代換,這種方法相信多數同學都會,但是如何准確地進行換元從而得到最終答案,卻是需要下一番工夫的。定積分的應用同樣是重點,常考的是面積、體積的求解,同學們應牢記相關公式,通過多練掌握解題技巧。對於定積分在物理上的應用(數一數二有要求),如功、引力、壓力、質心、形心等,近幾年考試基本都沒有涉及,考生只要記住求解公式即可。

❸ 考研數學一的知識點歸納

高數部分
考研數學一高數各部分常見題型和知識點。
一. 函數、極限與連續
1 求分段函數的復合函數;
2 求極限或已知極限確定原式中的常數;
3討論函數的連續性,判斷間斷點的類型;
4 無窮小階的比較;
5討論連續函數在給定區間上零點的個數,或確定方程在給定區間上有無實 根。

二.一元函數微分學
1 求給定函數的導數與微分(包括高階導數),隱函數和由參數方程所確定的函數求導,特別是分段函數和帶有絕對值的函數可導性的討論;
2利用洛比達法則求不定式極限;
3 討論函數極值,方程的根,證明函數不等式;
4 利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如「證明在開區間內至少存在一點滿足......」,此類問題證明經常需要構造輔助函數;
5 幾何、物理、經濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數和約束條件,判定所討論區間;
6 利用導數研究函數性態和描繪函數圖形,求曲線漸近線。
三.一元函數積分學
1 計算題:計算不定積分、定積分及廣義積分;
2關於變上限積分的題:如求導、求極限等
3 有關積分中值定理和積分性質的證明題;
4定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,
壓力,引力,變力作功等;
5 綜合性試題.
四.向量代數和空間解析幾何
1計算題:求向量的數量積,向量積及混合積;
2 求直線方程,平面方程;
3判定平面與直線間平行、垂直的關系,求夾角;
4 建立旋轉面的方程;
5 與多元函數微分學在幾何上的應用或與線性代數相關聯的題目。
五.多元函數的微分學
1 判定一個二元函數在一點是否連續,偏導數是否存在、是否可微,偏導數是否連續;
2 求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;
3 求二元、三元函數的方向導數和梯度;
4 求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數的微分學與前面向量代數與空間解析幾何的綜合題,應結合起來復習;
5多元函數的極值或條件極值在幾何、物理與經濟上的應用題;求一個二元連續函數在一個有界平面區域上的最大值和最小值。這部分應用題多要用到其他領域的知識,考生在復習時要引起注意。
六.多元函數的積分學
1二重、三重積分在各種坐標下的計算,累次積分交換次序;
2第一型曲線積分、曲面積分計算;
3 第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;
4第二型(對坐標)曲面積分的計算,高斯公式及其應用;
5 梯度、散度、旋度的綜合計算;
6 重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。數學一考生對這部分內容和題型要引起足夠的重視。
七.無窮級數
1 判定數項級數的收斂、發散、絕對收斂、條件收斂;
2 求冪級數的收斂半徑,收斂域;
3 求冪級數的和函數或求數項級數的和;
4將函數展開為冪級數(包括寫出收斂域);
5 將函數展開為傅立葉級數,或已給出傅立葉級數,要確定其在某點的和(通常要用狄里克雷定理);
6綜合證明題。
八.微分方程
1 求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當然,有些方程不直接屬於我們學過的類型,此時常用的方法是將x與y對調或作適當的變數代換,把原方程化為我們學過的類型;
2 求解可降階方程;
3 求線性常系數齊次和非齊次方程的特解或通解;
4 根據實際問題或給定的條件建立微分方程並求解;
5 綜合題,常見的是以下內容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關,全微分的充要條件,偏導數等。

❹ 考研數學需要重點記憶的幾個知識點

3、對每一學科應有兩至三段復習過程
第一段應該全面系統復習課本,把每章節的知識系統網路加以理順,使大腦對全書有清晰記憶思路。第二段注意習題練習,把原來練習過的習題有主有次,有選擇性地重復練習,對於自己熟悉的習題重復閱讀,加深記憶;對於自己不太熟練,甚至疑難問題,重復練習,重復運算。時間允許的話,第三段採取瀏覽記憶和強化記憶相結合。經過這樣的考前復習,可以達到綱舉目張,思路清晰,發展能力的目的。3、對每一學科應有兩至三段復習過程
第一段應該全面系統復習課本,把每章節的知識系統網路加以理順,使大腦對全書有清晰記憶思路。第二段注意習題練習,把原來練習過的習題有主有次,有選擇性地重復練習,對於自己熟悉的習題重復閱讀,加深記憶;對於自己不太熟練,甚至疑難問題,重復練習,重復運算。時間允許的話,第三段採取瀏覽記憶和強化記憶相結合。經過這樣的考前復習,可以達到綱舉目張,思路清晰,發展能力的目的。

❺ 考研數學哪些章節或知識點

第一章:函數、極限、連續

考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則(單調有界准則和夾逼准則)兩個重要極限:

函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1、理解函數的概念,掌握函數的表示法,並會建立簡單應用問題中的函數關系。
2、了解函數的有界性、單調性、周期性和奇偶性。
3、理解復合函數及分段函數的概念,了解反函數及隱函數的概念。
4、掌握基本初等函數的性質及其圖形,了解初等函數的概念。
5、了解數列極限和函數極限(包括左極限與右極限)的概念。
6、了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法。
7、理解無窮小的概念和基本性質。掌握無窮小的比較方法。了解無窮大量的概念及其與無窮小量的關系。
8、理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
9、了解連續函數的性質和初等函數的連續性,了解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質。

第二章:一元函數微分學

考試內容
導數和微分的概念 導數的幾何意義和經濟意義 函數的可導性與連續性之間的關系 平面曲線的切線與法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數和隱函數的微分法高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數的極值 函數單調性的判別 函數圖形的XXXXX性、拐點及漸近線 函數圖形的描繪函數的最大值與最小值
考試要求
1、理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。
2、掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數。
3、了解高階導數的概念,會求簡單函數的高階導數。
4、了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分。
5、理解羅爾(Rolle)定理、拉格朗日( Lagrange)中值定理、了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個定理的簡單應用。
6、會用洛必達法則求極限。
7、掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用。
8、會用導數判斷函數圖形的XXXXX性(註:在區間(a,b)內,設函數f(x)具有二階導數。當時,f(x)的圖形是凹的;當時,f(x)的圖形是凸的),會求函數圖形的拐點和漸近線。
9、會描述簡單函數的圖形。

第三章:一元函數積分學

考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用
考試要求
1、理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握計算不定積分的換元積分法和分部積分法。
2、了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式,以及定積分的換元積分法和分部積分法。
3、會利用定積分計算平面圖形的面積、旋轉體的體積及函數的平均值,會利用定積分求解簡單的經濟應用問題。
4、了解反常積分的概念,會計算反常積分。

第四章:多元函數微積分學

考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數偏導數的概念與計算 多元復合函數的求導法與隱函數求導法二階偏導數 全微分 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算 無界區域上簡單的反常二重積分
考試要求
1、了解多元函數的概念,了解二元函數的幾何意義。
2、了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質。
3、了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數。
4、了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決某些簡單的應用題。
5、了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)。了解無界區域上較簡單的反常二重積分並會計算。

第五章:無窮級數

考試內容
常數項級數的收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與p級數及其收斂性 正項級數收斂性的判別法 任意項級數的絕對收斂與條件收斂 交錯級數與萊布尼茨定理 冪級數及其收斂半徑、收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式
考試要求
1、了解級數的收斂與發散、收斂級數的和的概念。
2、掌握級數的基本性質和級數收斂的必要條件,掌握幾何級數及p級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法。
3、了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,掌握交錯級數的萊布尼茨判別法。
4、會求冪級數的收斂半徑、收斂區間及收斂域。
5、了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數,並會由此求出某些數項級數的和。
6、掌握與的麥克勞林(Maclaurin)展開式,會用它們將簡單函數間接展成冪級數。

第六章:常微分方程與差分方程

考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程與差分方程的簡單應用
考試要求
1、了解微分方程及其階、解、通解、初始條件和特解等概念。
2、掌握變數可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3、會解二階常系數齊次線性微分方程。
4、了解線性微分方程解的性質及解的結構定理,會解自由項為多項式、指數函數、正弦函數、餘弦函數,以及它們的和與積的二階常系數非齊次線性微分方程。
5、了解差分與差分方程及其通解與特解等概念。
6、掌握一階常系數線性差分方程的求解方法。
7、會應用微分方程和差分方程求解簡單的經濟應用問題。

線性代數

第一章:行列式

考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質。
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。

第二章:矩陣

考試要求
1、理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義和性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質。
2、掌握矩陣的線性運算、乘法、轉置,以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質。
3.理解逆矩陣的概念,掌握逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。

第三章:向量

考試內容
向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線形無關向量組的正交規范化方法。
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則。
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念。掌握向量組線性相關、線性無關的有關性質及判別法。
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩。
4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系。
5.了解內積的概念、掌握線性無關向量組正交規范化的施密特(Schmidt)方法。

第四章:線性方程組

考試內容

線性方程組的克萊姆(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系 非齊次線性方程組的通解
考試要求
1. 會用克萊姆法則解線性方程組。
2. 掌握非齊次線性方程組有解和無解的判定方法。
3. 理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。
4. 理解非齊次線性方程組解的結構及通解的概念。
5. 掌握用初等行變換求解線性方程組的方法。

第五章:矩陣的特徵值和特徵向量

考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣。
考試要求
1. 理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2. 理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
3. 掌握實對稱矩陣的特徵值和特徵向量的性質。

第六章:二次型

考試內容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。
2. 了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形。
3. 理解正定二次型、正定矩陣的概念,並掌握其判別法。

概率論與數理統計

第一章:隨機事件和概率

考試內容
隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1、了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。
2、理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3、理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。

第二章:隨機變數及其分布

考試內容
隨機變數 隨機變數的分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度 常見隨機變數的分布 隨機變數函數的分布
考試要求
1、理解隨機變數的概念,理解分布函數的概念及性質;會計算與隨機變數相聯系的事件的概率。
2、理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布()、幾何分布、超幾何分布、泊松(Poisson)分布及其應用。
3、掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4、理解連續型隨機變數及其概率密度的概念,掌握均勻分布、正態分布、指數分布及其應用,其中參數為λ(λ>0)的指數分布的密度函數為


5、會求隨機變數函數的分布。

第三章:多維隨機變數的分布

考試內容
多維隨機變數及其分布函數 二維離散型隨機變數的概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常見二維隨機變數的分布 兩個及兩個以上隨機變數的函數的分布
考試要求
1、理解多維隨機變數的分布函數的概念和基本性質。
2、理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度。掌握兩維隨機變數的邊緣分布和條件分布。
3、理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件;理解隨機變數的不相關性與獨立性的關系。
4、掌握二維均勻分布和二維正態分布,理解其中參數的概率意義。
5、會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布。

❻ 考研數學備考時如何通過做題總結知識點

首先對考研所要求的考試大綱進行分析,對考試知識點想我。然後,你可以對高數知識進行梳理。最後,你可以通過做題鞏固成績。

❼ 考研數學二復習資料

2023年考研數學網路網盤下載

鏈接:https://pan..com/s/1YgeRnPRdM1wjHhNn7BSmzg?pwd=2D72 提取碼:2D72

簡介:2023考研數學培訓輔導班程,權威發布最新考研數學一二三各科目教學培訓課程資料,考研數學電子書教材,考研數學復習資料。

❽ 考研數學復習有哪些重點的知識點

考研數學的復習,主要從知識點、練習題、解題技巧、歷年真題與沖刺模擬入手,復習資料可以看湯家鳳的以下:
知識點全覆蓋:2017《考研數學復習大全》(數一數二數三都有);
練習題2017《考研數學接力題典1800》
解題技巧:2017《考研數學客觀題簡化求解》《考研數學常考題型解題方法技巧歸納》
歷年真題:2017《考研數學15年真題解析與方法指導》
沖刺模擬:2017《考研數學全真模擬試題及精析》《考研數學絕對考場最後八套題》

❾ 考研數學每年必考的知識點有哪些

數學一、三、四的高等數學佔50%,線性代數和概率論與數理統計各佔25%。
數學二高等數學佔80%,線代20%。
數學一考察的知識點主要是向量代數、三重積分等
二,三,四,沒有具體要求

❿ 2022考研數學如何復習

2023年考研數學網路網盤下載

考研資料實時更新
鏈接:https://pan..com/s/1OaxK1mrBZDySwYCEKqepgQ?pwd=2D72
提取碼:2D72

簡介:2023考研數學培訓輔導班程,權威發布最新考研數學一二三各科目教學培訓課程資料,考研數學電子書教材,考研數學復習資料。