當前位置:首頁 » 基礎知識 » 三角形數學史知識
擴展閱讀
分享幼兒園小知識 2024-11-01 22:32:07

三角形數學史知識

發布時間: 2022-08-11 07:21:28

『壹』 求關於三角形的知識

所謂三角形的"四心",是指三角形的四種重要線段相交而成的四類特殊點.它們分別是三角形的內心,外心,垂心與重心.
1.垂心
三角形三條邊上的高相交於一點,這一點叫做三角形的垂心.
2.重心
三角形三條邊上的中線交於一點,這一點叫做三角形的重心.
3.
三角形三邊的中垂線交於一點,這一點為三角形外接圓的圓心,稱外心
4.
三角形三內角平分線交於一點,這一點為三角形內切圓的圓心,稱內心,
重心
三邊上中線的交點
垂心
三條高的交點
內心
內接圓圓心
三個角角平分線交點
外心
外接圓圓心
三條邊的垂直平分線交點
還有一個心叫傍心:外角平分線的交點(有3個),(或傍切圓的圓心)
只有正三角形才有中心,這時重心,內心.外心,垂心,四心合一.

『貳』 三角形的相關知識

三角形基礎知識是研究三角形的基礎,要知道三條線段只有滿足三邊關系才能組成三角形,要知道三角形的高,中線,角平分線是三條線段,要知道它們的有關性質,特別要注意三角形的高的位置與三角形的形狀有關,因而解答三角形高有關問題時常需分類討論。

知識全解

一.三角形的概念及其表示

由不在同一直線上的三條線段組成的圖形稱為三角形。「三角形」可以用符號「△」表示。

提示:「不在同一直線上」,「三條三段」,「首尾順次相接」這三個條件,缺一不可。

二.三角形三邊關系

三角形任意兩邊之和大於第三邊,兩邊之差小於第三邊。

提示:如果三邊大小關系明確,看較小的兩邊的和是否大於第三邊;如果三邊大小關系沒有明確,則有兩種思路:一種是看任意兩邊之和是否大於第三邊;另一種是選取兩邊與第三條邊進行比較,看是否滿足兩邊之和大於第三邊,兩邊之差小於第三邊。

三.三角形的中線

三角形中,連接一個頂點和它所對邊的中點,所得的線段稱為三角形的中線。

提示:三角形中線將三角形分成面積相等的三角形。

四.三角形的高

從三角形的一個頂點向它所對的邊所在的直線畫垂線,頂點和垂足間的線段稱為三角形的高線,簡稱三角形的高。

『叄』 關於三角形的知識你知道哪些

三角形內角和等於180度。三角形的外角和等於360度。三角形分為:銳角三角形,直角三角形,鈍角三角形,(等腰三角形,等邊三角形,)。三角形的面積公式是:底乘高除二。兩邊之和大於第三邊

『肆』 關於三角形的知識

關於三角形的知識有三角形的內角和定理,能用平行線的性質推出這一定理。
認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。
三角形內角和定理的推理的過程。在具體的圖形中不重復,且不遺漏地識別所有三角形。用三角形三邊不等關系判定三條線段可否組成三角形。

『伍』 數學的三角形七心定理有什麼都怎麼證明

我不知道還有七心定理,但我找了一下,你看一下吧,魅力無比的定理證明
——勾股定理的證明

勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。

左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。

【附錄】
一、【《周髀算經》簡介】
《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。《周髀算經》在數學上的主要成就是介紹了勾股定理及其在測量上的應用。原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的。
《周髀算經》使用了相當繁復的分數演算法和開平方法。

二、【伽菲爾德證明勾股定理的故事】
1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會神地談論著什麼,時而大聲爭論,時而小聲探討。由於好奇心驅使,伽菲爾德循聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼。只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形。於是伽菲爾德便問他們在干什麼?那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答道:「是5呀。」小男孩又問道:「如果兩條直角邊長分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不假思索地回答道:「那斜邊的平方一定等於5的平方加上7的平方。」小男孩又說:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心裡很不是滋味。
於是,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經過反復思考與演算,終於弄清了其中的道理,並給出了簡潔的證明方法

『陸』 三角形全部知識點的總結

如圖所示,在△ABC中,AB=8,AC=6,AD是△ABC的中線,則△ABD與△ADC的周長之差為多少?

這道題題目比較簡單,很容易得出答案是2,具體計算過程今天我不再分享,如果哪位朋友有興趣的話可以自己在評論區里給出過程也可以。

這道題裡面出現了中線,今天我們想一想三角形有多少線,和它們有關的性質、判定以及定理有哪些…

三角形的中線

從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

線段的垂直平分線:經過某一條線段的中點,並且垂直於這條線段的直線,叫做這條線段的垂直平分線。

注意:要證明一條線為一個線段的垂直平分線,應證明兩個點到這條線段的距離相等且這兩個點都在要求證的直線上才可以證明。

垂直平分線的性質:

1.垂直平分線垂直且平分其所在線段。

2.垂直平分線上任意一點,到線段兩端點的距離相等。

3.三角形三條邊的垂直平分線相交於一點,該點叫外心,並且這一點到三個頂點的距離相等。

垂直平分線的逆定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

『柒』 關於角和三角形的知識你知道哪些

角:

在幾何學中,角是由兩條有公共端點的射線組成的幾何對象。這兩條射線叫做角的邊,它們的公共端點叫做角的頂點。一般的角會假設在歐幾里得平面上,但在歐幾里得幾何中也可以定義角。角在幾何學和三角學中有著廣泛的應用。

角的大小與邊的長短沒有關系;角的大小決定於角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。

三角形:

三角形是由同一平面內不在同一直線上的三條線段『首尾』順次連接所組成的封閉圖形,在數學、建築學有應用。

常見的三角形按邊分有普通三角形(三條邊都不相等),等腰三角(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形);按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形。

(7)三角形數學史知識擴展閱讀

三角形性質:

1 、在平面上三角形的內角和等於180°(內角和定理)。

2 、在平面上三角形的外角和等於360° (外角和定理)。

3、 在平面上三角形的外角等於與其不相鄰的兩個內角之和。推論:三角形的一個外角大於任何一個和它不相鄰的內角。

4、 一個三角形的三個內角中最少有兩個銳角。

5、 在三角形中至少有一個角大於等於60度,也至少有一個角小於等於60度。

6 、三角形任意兩邊之和大於第三邊,任意兩邊之差小於第三邊。

7、 在一個直角三角形中,若一個角等於30度,則30度角所對的直角邊是斜邊的一半。

8、直角三角形的兩條直角邊的平方和等於斜邊的平方(勾股定理)。

『捌』 關於三角形的歷史

1665年,在帕斯卡死後出版的《論算術三角形》中,應用了算術三角形,即二項式系數所構成的三角形,在歐洲叫做帕斯卡三角形,事實上在我國,宋朝數學家賈憲(大約十一世紀人),就發現了這個三角形。1261年,南宋數學家楊輝在他的《詳解九章演算法》,其中有這個三角形,他作註解說,此法出於《釋鎖算書》,賈憲曾用此法。這說明1200年前,中國就已經發現和使用這個方法了