1. 高中數學必修1第一章思維導圖,求照片,詳細的
2. 高中數學知識結構框架圖
原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例
3. (人民教育出版社)求新課標數學A版必修1、2、4知識框架。。
必修一:
(一)集合
1.集合的含義與表示
(1)了解集合的含義,元素與集合的「屬於」關系。
(2)能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。
2.集合間的基本關系
(1)理解集合之間包含與相等的含義,能識別給定集合的子集。
( 2)在具體情境中,了解全集與空集的含義。
3.集合的基本運算
(1)理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
(3)能使用韋恩(Venn)圖表達兩個簡單集合間的關系及運算。
(二)函數概念與基本初等函數I(指數函數、對數函數、冪函數)
1.函數
(1)了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
(2)在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
(3)了解簡單的分段函數,並能簡單應用。
(4)理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解函數奇偶性含義。
(5)會運用函數的圖像理解和研究函數的性質。
2.指數函數
(1)了解指數函數模型的實際背景。
(2)理解有理指數冪的含義,了解實數指數冪的意義,掌握冪的運算。
(3)理解指數函數的概念及其單調性,掌握指數函數圖像通過的特殊點。
(4)知道指數函數是一類重要的函數模型。[來源:學科網ZXXK]
3.對數函數
(1)理解對數的概念及其運算性質,知道用換底公式將一般對數轉化成自然對數或常用對數;了解對數在簡化運算中的作用。
(2)理解對數函數的概念及其單調性,掌握對數函數圖像通過的特殊點。
(3)知道對數函數是一類重要的函數模型。
(4)了解指數函數 ( ,且 )與對數函數 (a>0,且a 1)互為反函數。
4.冪函數
(1)了解冪函數的概念。
(2)結合函數 的圖像,了解它們的變化情況,
5 .函數與方程
(1)結合二次函數的圖像,了解函數的零點與方程根的聯系,判斷一元二次方程根的存在性與根的個數。
(2)根據具體函數的圖象,能夠用二分法求相應方程的近似解。
6.函數模型及其應用
(1)了解指數函數、對數函數、冪函數的增長特徵,知道 直線上升、指數增長、對數增長等不同 函數類型增長的含義。
(2)了解函數模型(如指數函數、對數函數、冪函數、分段函數等在社會生活中普遍使用的函數模型)的廣泛應用。
必修二
(三)立體幾何初步
1.空間幾何體
(1)認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。
(2) 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上 述三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖。
(3)會用平行投影與中心投影兩種方法畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式。
(4)會畫某些建築物的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、、線條等不作嚴格要求)
(5)了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。
2.點、直線、平面之間的位置關系
(1)理解空間直線、平面位置關系的定義,並了解如下可以作為推理依據的公理和定理:
公理1:如果一條直線上的兩點在同一個平面內,那麼這條直線上的所有點都在此平面內。
公理2:過不在一條直線上的三點,有且只有一個平面。
公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
公理4:平行於同一條直線的兩條直線平行。
定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。
(2)以立體幾何的上述定義、公理和定理為出發點,認識和理解空間中線面平 行、垂直的有關性質與判定定理。
理解以下判定定理:
定理1、平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
定理2、一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。
定理3、一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。
定理4、一個平面過另一個平面的垂線,則兩個平面垂直。
理解以下性質定理,並能夠證明:
定理1、一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。
定理2、兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。
定理3、垂直於同一個平面的兩條直線平行。
定理4、兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。
(3)能運用定理、公理和已獲得的結論證明一些空間圖形的位置關系的簡單命題。
(四)平面解析幾何初步
1.直線與方程
(1)在平面直角坐標系中,結合具體圖形,掌握確定直線位置的幾何要素。
(2)理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式。
(3)能根據兩條直線的斜率判定這兩條直線平行或垂直。
(4)掌握確定直線位置關系的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),了解斜截式與一次函數的關系。
(5)能用解方程組的方法求兩相交直線的交點坐標。
(6)掌握兩點間的距離公式、點到直線的距離公式,會求兩平行直線間的距離。
2.圓與方程
(1)掌握確定圓的幾何要素,掌握圓的標准方程與一般方程。
(2)能根據給定直線和圓的方程,判斷直線與圓的位置關系;能 根據給定兩個圓的方程判斷圓與圓的位置關系。
(3)能用直線和圓的方程解決一些簡單的問題。
(4)初步了解用代數方法處理幾何問題的思想。
3.空間直角坐標系
(1)了解空間直角坐標系,會用空間直角坐標表示點的位置。
(2)會推導空間兩點間的距離公式。
必修四
(九)平面向量
1.平面向量的實際背景及基本概念
(1)了解向量的實際背景。
(2)理解平面向量的概念和兩個向量相等的含義。
(3)理解向量的幾何表示。
2.向量的線性運算
(1)掌握向量加法、減法的運算,理解其幾何意義。
(2)掌握向量數乘的運算及其幾何意義,理解兩個向量共線的含義。
(3)了解向量線性運算的性質及其幾何意義。
3.平面向量的 基本定理及坐標表示
(1)了解平面向量的基本定理及其意義。
(2)掌握平面向量的正交分解及其坐標表示。
(3)會用坐標表示平面向量的加法、減法與數乘運算。
(4)理解用坐標表示的平面向量共線的條件。[來源:Zxxk.Com]
4.平面向量的數量積
(1)理解平面向量數量積的含義及其物理意義。
(2)了解平面向量的數量積與向量投影的關系。
(3)掌握數量積的坐標表達式,會進行平面向量數量積的運算。
(4)能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
5.向量的應用
(1)會用向量方法解決某些簡單的平面幾何問題。
(2)會用向量方法解決簡單的力學問題與其他一些實際 問題。
(十)三角恆等變換
1.兩角和與差的三角函數公式
(1)會用向量的數量積推導出兩角差的餘弦公式。
(2)會用兩角差的餘弦公式推導出兩角差的正弦、正切公式。
(3)會用兩角差的餘弦公式推導出兩角和的正弦、餘弦、正切公式和二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。
2.簡單的三角恆等變換
能運用上述公式進行簡單的恆等變換(包括導出積化和差、和差化積、半形公式,但不要求記憶)。
4. 高中數學必修一第二章的知識結構圖 急~~~~~~~
《圓錐曲線》知識結構 二次曲線與直線的關系C:A1x2+C1y2+Dx+Ey+F=0
(A1C1不全為0)
l:A2x+B2y+C2=0
(A1、B2不全為0)
概念:
定義:
圖形:
方程:
性質:
[
范圍:
中心:
焦點:
頂點:
對稱軸:
准線:
漸近線
離心率:
焦准距:
焦半徑:
通徑:
[
相離
相切
相交
圓
MC=r(r>0)
(x-x0)2+(y-y0)2=r2(r>0)
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
x0-4≤x≤x0+r,y0-r≤y≤y0+r
C(x0,y0)
y-y0=k(x-x0)(k∈R)
及x=x0
d>r,或<0
d=r,或=0
過圓x2+y2=r2上點M(x,y)的切線方程
x1x+y1y=r2
d0
弦長l=2=
(θ∈R)
橢圓
MF1+MF2=2a(0
=e(0
+=1(a>b>0) +=1(a>b>0)
-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a
0(0,0)
F1(-C,O)、F2(C,O) F1(O,-C)、F2(O,C)
C=
F1F2=2C
A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)、
B1(0,-b)、B2(0,b) B1(-b,0)、B2(b,0)
x=0,y=0
A1A2=2a,B1B2=2b
l1:x=-,l2:x= l1:y=,l2:y=a
e(0
FK=
r1=e(x+)、r2=e(-x) r1=e(y+)、r2=e(-y)
P1P2=
<0
=0
>0
弦長l=
(θ∈R)
雙曲線
MF1-MF2=2a(0<2a
=e(e>1,MN⊥l於N,Fl)
-=1(a>0,b>0) -=1(a>0,b>0)
x≤-a或x≥a,y∈R x∈R,y≤-a或y≥a
0(0,0)
F1(-C,0)、F2(C,0) F1(0,-C)、F2(0,C)
C=
F1F2=2c
A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)
x=0,y=0
A1A2=2a,B1B2=2b
l1:x=-,l2:x= l1:y=,l2:y=
y=x、y=x y=x、y=-x
e(e<1)
FK= r1=ex+,r2=ex-,
r1=ey+,r2=ey-
P1P2= <0 =0 >0 弦長l= 拋物線 =e(e=1,MN⊥l於N,Fl)
y2=2px(p>0) y2=-2px(p>0)
x2=2py(p>0) x2=-2py(p>0)
x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0F(,0) F(-,0) F(0,)F(0,-) 0(0,0) y=0 x=0 l:x=- l:x= l:y=- l:y= e=1FK=pMF=x+ MF=-x MF=y+ MF=-y P1P2=2P <0 =0 >0 弦長l= 焦點弦長l=x1+x2+p l=p-x1-x2 l=y1+y2+p l=p-y1-y2
5. 高一數學(集合)知識概念總結--結構圖。
集合
1.集合的概念與表示方法
A.概念~~~~
B.表示方法 a.列舉法 b.描述法 c.圖示法
2.集合間的關系
A.包含---子集與真子集
B.相等
3.集合的運算
A.交集
B.並集
C.補集
4.集合的應用---不等式的解集
A.含絕對值不等式
B.一元二次不等式
C.簡單分式不等式
把上面的畫成網路式,再把書中對應的內容填上就行了.
6. 高一數學必修一的知識點總結
高一數學必修1第一章知識點總結
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=
韋
恩
圖
示
性
質 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
例題:
1.下列四組對象,能構成集合的是 ( )
A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等於它自身的實數
2.集合{a,b,c }的真子集共有 個
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關系是 .
4.設集合A= ,B= ,若A B,則 的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數的定義域:
⑴ ⑵
2.設函數 的定義域為 ,則函數 的定義域為_ _
3.若函數 的定義域為 ,則函數 的定義域是
4.函數 ,若 ,則 =
6.已知函數 ,求函數 , 的解析式
7.已知函數 滿足 ,則 = 。
8.設 是R上的奇函數,且當 時, ,則當 時 =
在R上的解析式為
9.求下列函數的單調區間:
⑴ (2)
10.判斷函數 的單調性並證明你的結論.
11.設函數 判斷它的奇偶性並且求證: .
7. 高中數學必修1第一章思維導圖是什麼圖片
8. 高中數學必修一各章思維導圖
內容如下:
《高中數學必修1》(即《普通高中課程標准實驗教科書·數學必修1·A版》的簡稱)是2007年1月人民教育出版社出版的圖書,作者是人民教育出版社課程教材研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。
本冊包括:集合、函數。
作為這套書的主編,在大家開始用這套書學習數學之前,對於為什麼要學數學、如何才能學好數學等問題,我有一些想法與你們交流。
為什麼要學數學呢?我想從以下兩個方面談談認識。
1.數學是有用的。
2.學數學能提高能力
那麼,如何才能學好數學呢?我想首先應當對數學有一個正確的認識。
1.數學是自然的。
2.數學是清楚的。
在對數學有一個正確認識的基礎上,還需要講究一點點方法。
1.學數學要摸索自己的學習方法。
2.學數學趁年輕。