當前位置:首頁 » 基礎知識 » 數學中考必考的四個知識點
擴展閱讀
人中龍鳳是什麼歌詞 2025-01-10 20:53:31
同學聊聊天有什麼意義 2025-01-10 20:21:56
牽手的歌詞含義是什麼 2025-01-10 19:59:21

數學中考必考的四個知識點

發布時間: 2022-08-09 17:58:34

1. 初中數學學好要掌握哪些基礎知識

有理數
整式的加減
一元一次方程
圖形初步認識
相交線與平行線
平面直角坐標系
三角形
二元一次方程
不等式與不等式組
數據的收集、整理與描述
全等三角形
軸對稱
實數
一次函數
整式的乘除與因式分解
分式
反比例函數
勾股弦定理
四邊形
數據的分析
二次根式
一元二次方程
旋轉

概率初步
二次函數
相似
銳角三角函數
投影與視圖

2. 中考數學主要是考什麼內容

初一上冊
有理數、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬於簡單。
【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、總結、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
初一下冊
相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和資料庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。
【考察內容】
①平行線的性質(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①考察平面直角坐標系內點的坐標特徵
②函數自變數的取值范圍和球函數的值
③考察結合圖像對簡單實際問題中的函數關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內容】
①方程組的解法,解方程組
②根據題意列二元一次方程組解經濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內容:】
① 一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。
② 列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。
③留意不等式(組)和函數圖像的結合問題。
(5)資料庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。
【考察內容】
①常見統計圖和平均數,眾數,中位數的計算分析。
②方差,極差的應用分析
③與現實生活有關的實際問題的考察熱點。題目注重考查統計學的知識分析和數據處理。
初二上冊
三角形、全等三角形、軸對稱、整式的乘除與因式分解、分式。
(1)三角形:是初中數學的基礎,中考命題中的重點。中考試題分值約為18-24分,以填空,選擇,解答題,也會出現一些證明題目。
【考查內容】
①三角形的性質和概念,三角形內角和定理,三邊關系,以及三角形全等的性質與判定。
②三角形全等融入平行四邊形的證明
③三角形運動,折疊,旋轉,拼接形成的新數學問題
④等腰三角形的性質與判定,面積,周長等
⑤直角三角形的性質,勾股定理是重點
⑥三角形與圓的相關位置關系
⑦三角形中位線的性質應用
(2)全等三角形
(3)軸對稱:圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
【考察內容】
①軸對稱和軸對稱圖形的性質判別。
②注意鏡面對稱與實際問題的解決。
(4)整式的乘除與因式分解:中考試題中分值約為4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公司的幾何意義
③利用提公因式法和公式法分解因式。
(5)分式:中考試題中分值約為6-8分,主要以填空,簡答計算題型出現,難易度屬於中。
【考察內容】
①分式的概念,性質,意義
②分式的運算,化簡求值。
③列分式方程解決實際問題。
初二下冊
二次根式、勾股定理、四邊形、一次函數和數據的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知識是近幾年各地中考命題的熱點之一,考察題型為選擇題,填空題,應用題為主,分值一般8-12分,難易度為難。
【考察內容】
①常見銳角的三角函數值的計算
②根據圖形計算距離,高度,角度的應用題
③根據題中給出的信息構建圖形,建立數學模型,然後用解直角三角形的知識解決問題。
(3)四邊形:初中數學中考中的重點內容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。
【考察內容】
①多邊形的內角和,外角和等問題
②圖形的鑲嵌問題
③平行四邊形,矩形,菱形,正方形,等腰梯形的性質和判定。
(4)一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
【考察內容】
①會畫一次函數的圖像,並掌握其性質。
②會根據已知條件,利用待定系數法確定一次函數的解析式。
③能用一次函數解決實際問題。
④考察一次函數與二元一次方程組,一元一次不等式的關系。
(5)數據的分析
初三上冊
二次函數、一元二次方程、旋轉、圓和概率初步。
(1)二次函數:二次函數的圖像和性質是中考數學命題的熱點,難點。試題難度一般為難。常見選擇,填空題分值為3-5分,綜合題分值為10-12分。
【考察內容】
①能通過對實際問題情境的分析確定二次函數的表達式,並體會二次函數的意義。
②能用數形結合,歸納等熟悉思想,根據二次函數的表達式(圖像)確定二次的開口方向,對稱軸和頂點的坐標,並獲得更多信息。
③綜合運用方程,幾何圖形,函數等知識點解決問題。
(2)一元二次方程:中考分值約為3-5分,題型主要以選擇,填空為主,極少出現簡答,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。
(3)旋轉:圖形的平移,旋轉是中考題的新題型,熱點題型,在試題比重,逐年上升。分值一般為5-8分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
【考察內容】
①中心對稱和中心對稱圖形的性質
②旋轉和平移的性質。
(4)圓:圓和圓的有關性質與圓的有關計算是近幾年各地中考命題的重點內容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結論開放探索題作為新的題型,分值一般是6-12分,難易度為中。
【考察內容】
①圓的有關性質的應用。垂徑定理是重點。
② 直線和圓,圓和圓的位置關系的判定及應用。
③弧長,扇形面積,圓柱,圓錐的側面積和全面積的計算
④圓與相似三角形,三角函數的綜合運用以及有關的開放題,探索題。
(5)概率初步:分值一般3-6分,題型以選擇,填空常見,更多以解答題目為主,難易度為中。
【考察內容】
①簡答事件的概率求解,圖表法和數形圖法
②利用概率解決實際,公平性問題等
③注意概率知識與方程相結合的綜合性試題,選材貼近生活,越來越新。
初三下冊
反比例函數、相似、銳角三角函數和投影與視圖。
(1)反比例函數:反比例函數的圖像和性質是中考數學命題的重要內容,試題新穎,題型靈活多樣,所佔分值約為3-8分,難易度屬於難。
【考察內容】
①會畫反比例函數的圖像,掌握基本性質。
②能根據條件確定反比例函數的表達式。
③能用反比例函數解決實際問題。
(2)相似:圖形的形似是平面幾何中極為重要的內容,是中考數學中的重點考察內容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬於難。
【考察內容】
①相似三角形的性質和判別方法,是重點。
②相似多邊形的認識,黃金分割的應用。
③相似形與三角形,平行四邊形的綜合性題目是難點。
(3)銳角三角函數
(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現。
【考察內容】
①常見幾何體的三視圖
②常見幾何體的展開和折疊,展開和折疊是考試的熱點,值得注意。
③利用相似結合平行投影和中心投影解決實際問題。
(不同地區分值不同,可供參考)
選擇題:3分一個,共14個,總分42分。
填空題:3分一個,共5個,總分15分。
解答題:共7題,總分63分。
(一)線段、角的計算與證明問題
中考中的簡答題一般是分為兩到三部分的。第一部分基本上都是簡單題和中檔題,目的在於考查基礎。第二部分第二部分往往就是開始拉分的中難題了。
(二)列方程(組)解決應用問題
在中考中,方程是初中數學當中最重要的部分,所以也是中考必考內容。從近年來中考來看,結合時事熱點考的比較多,所以還需要考生有一些實際生活經驗。
(三)閱讀理解問題
閱讀理解問題是中考中的一個亮點。閱讀理解往往是先給一個材料或介紹一個超綱的知識或給出一個針對某一種題目的解法,然後再給出條件出題。
(四)多種函數交叉綜合問題
初中接觸的函數主要有一次函數、二次函數和反比例函數。這類題目本身並不會太難,很少作為壓軸題目出現,一般都是作為一道中檔次題目出現來考查學生對函數的掌握。
(五)動態幾何
從歷年的中考來看,動態幾何往往作為壓軸的題目出現,得分率也是最低的。動態幾何一般分為兩類,一類是代數綜合方面,在坐標系中,動直線一般是用多種函數交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設立動點,考查學生的綜合分析能力。
(六)圖形位置關系
中學數學當中,圖形位置關系主要包括點、線、三角形、矩形和正方形及它們之間的關系。在中考中會包括在函數、坐標系及幾何題中,其中最重要的是三角形的各種問題。

3. 中考的數學必考知識點有哪些全部告訴我,謝謝!

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:
1、有理數
有理數:①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

4. 初中數學有哪些中考知識點和判定。求助,謝謝你們了

中考復習資料網路網盤資源
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234提取碼:1234
介紹:資源含有各大初中網路課程機構視頻教學資料、各類型初中中考沖刺、課件、教程等各類資料合集。

5. 數學中考知識點歸納有哪些

數學中考知識點如下:

1、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

2、求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

3、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

4、在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

5、除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然後計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。

6. 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

7. 數學中考必背知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

考點5:三角形的重心

考核要求:知道重心的定義並初步應用。

考點6:向量的有關概念

考點7:向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

二、銳角三角比(2個考點)

考點8:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點9:解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點11:用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點12:畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點13:二次函數的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

四、圓的相關概念(6個考點)

考點14:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點15:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點16:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點17:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點18:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

考點19:畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

五、數據整理和概率統計(9個考點)

考點20:確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點21:事件發生的可能性大小,事件的概率

考核要求:

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

注意:

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點22:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點23:數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點24:統計的含義

考核要求:

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點25:平均數、加權平均數的概念和計算

考核要求:

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點26:中位數、眾數、方差、標准差的概念和計算

考核要求:

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

注意:

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

考核要求:

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點28:中位數、眾數、方差、標准差、頻數、頻率的應用

考核要求:

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。

8. 數學初三必背定理大全

初中數學的幾何部分,有很多定理需要記憶理解。但平時我們對知識點的學習都是分散的,不利於記憶!
今天,整理了中考數學必背的幾何定理,這些基本定理對我們解幾何題目而言是關鍵中的關鍵,一定要牢記,平時也可以多看看~
點、線、角
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:對頂角相等
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:在同一平面內,過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
幾何平行
平行定理:經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補
三角形的邊和角
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
全等三角形判定
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:在一個角的內部,且到這個角的兩邊的距離相等的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形性質
等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
拓展:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
對稱定理
定理:線段垂直平分線上的點到這條線段兩個端點的距離相等
逆定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作到線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理
定理:在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半
直角三角形斜邊上的中線等於斜邊的一半
勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方,即a² +b²= c²
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a² +b²= c² ,那麼這個三角形是直角三角形
多邊形內角和定理
定理:四邊形的內角和等於360°;四邊形的外角和等於360°
多邊形內角和定理:n邊形的內角和等於(n-2)×180°
推論:任意多邊形的外角和等於360°
平行四邊形定理
平行四邊形性質定理:
1.平行四邊形的對角相等
2.平行四邊形的對邊相等
3.平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形
2.兩組對邊分別相等的四邊形是平行四邊形
3.對角線互相平分的四邊形是平行四邊形
4.一組對邊平行且相等的四邊形是平行四邊形
矩形定理
矩形性質定理1:矩形的四個角都是直角
矩形性質定理2:矩形的對角線相等
矩形判定定理1:有三個角是直角的四邊形是矩形
矩形判定定理2:對角線相等的平行四邊形是矩形
菱形定理
菱形性質定理1:菱形的四條邊都相等
菱形性質定理2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理1:四邊都相等的四邊形是菱形
菱形判定定理2:對角線互相垂直的平行四邊形是菱形
正方形定理
正方形性質定理1:正方形的四個角都是直角,四條邊都相等
正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱定理
定理1:關於中心對稱的兩個圖形是全等的
定理2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
等腰梯形性質定理
等腰梯形性質定理:
1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
中位線定理
三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半
梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2,S=L×h
相似三角形定理
相似三角形定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似
2.兩邊對應成比例且夾角相等,兩三角形相似
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
性質定理:
1.相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
2.相似三角形周長的比等於相似比
3.相似三角形面積的比等於相似比的平方
三角函數定理
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
圓的定理
定理:過不共線的三個點,可以作且只可以作一個圓
定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
定理:
1.在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
2.經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線
3.圓的切線垂直於經過切點的半徑
4.三角形的三個內角平分線交於一點,這點是三角形的內心
5.從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
6.圓的外切四邊形的兩組對邊的和相等
比例性質定理
比例的基本性質
如果a:b=c:d,那麼ad=bc;如果ad=bc,那麼a:b=c:d
合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

9. 數學中考必考知識點有哪些

數學中考必考知識點有如下:

1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。

2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。

3、若一個三角形30°內角所對的邊是某一邊的一半,那麼這個三角形是以這條長邊為斜邊的直角三角形。

4、圓錐底面半徑 r=n°/360°L(L為母線長)(r為底面半徑)。

5、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線,AB與⊙O相交,d<r。