當前位置:首頁 » 基礎知識 » 新華書店關於數學的知識
擴展閱讀
經典奶多少錢一霜 2025-01-10 23:44:51
茶葉知識大全150字 2025-01-10 23:26:06

新華書店關於數學的知識

發布時間: 2022-08-09 03:55:28

① 關於數學的小知識

奇與偶,有界與無界,善與惡,左與右,一與眾,.雄與雌,直與曲,正方與長方,亮與暗,動與靜。

上面所寫的這些對立概念被兩千多年前的著名的「畢達哥拉絲學派"認為是整個宇宙的10個對立概念。

因此兩千多年以前人們就認識到,世界是由許多相互矛盾的事物組成的。你要認識這個世界,改造這個世界,就要從這些矛盾的事物入手。既然這是萬物的普遍規律,那麼數學也要遵守。下面我們就專門談談這個問題。

負數的發現

人們在生活中經常會遇到各種相反意義的量。比如,在記帳時有餘有虧;在計算糧倉存米時,有時要記進糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。於是人們引入了正負數這個概念,把余錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。

據史料記載,早在兩千多年前,我國就有了正負數的概念,掌握了正負數的運演算法則。人們計算的時候用一些小竹棍擺出各種數字來進行計算。這些小竹棍叫做「算籌"算籌也可以用骨頭和象牙來製作。

我國三國時期的學者劉徽在建立負數的概念上有重大貢獻。劉徽首先給出了正負數的定義,他說:「今兩算得失相反,要令正負以名之。"意思是說,在計算過程中遇到具有相反意義的量,要用正數和負數來區分它們。

劉徽第一次給出了正負區分正負數的方法。他說:「正算赤,負算黑;否則以邪正為異"意思是說,用紅色的小棍擺出的數表示正數,用黑色的小棍擺出的數表示負數;也可以用斜擺的小棍表示負數,用正擺的小棍表示正數。

我國古代著名的數學專著《九章算術》(成書於公元一世紀)中,最早提出了正負數加減法的法則:「正負數曰:同名相除,異名相益,正無入負之,負無入正之;其異名相除,同名相益,正無入正之,負無入負之。"這里的「名"就是「號",「除"就是「減",「相益"、「相除"就是兩數的絕對值「相加"、「相減",「無"就是「零"。

用現在的話說就是:「正負數的加減法則是:同符號兩數相減,等於其絕對值相減,異號兩數相減,等於其絕對值相加。零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減,同號兩數相加,等於其絕對值相加。零加正數等於正數,零加負數等於負數。"

這段關於正負數的運演算法則的敘述是完全正確的,與現在的法則完全一致!負數的引入是我國數學家傑出的貢獻之一。

用不同顏色的數表示正負數的習慣,一直保留到現在。現在一般用紅色表示負數,報紙上登載某國經濟上出現赤字,表明支出大於收入,財政上虧了錢。

負數是正數的相反數。在實際生活中,我們經常用正數和負數來表示意義相反的兩個量。夏天武漢氣溫高達42°C,你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個負號讓你感到北方冬天的寒冷。

在現今的中小學教材中,負數的引入,是通過算術運算的方法引入的:只需以一個較小的數減去一個較大的數,便可以得到一個負數。這種引入方法可以在某種特殊的問題情景中給出負數的直觀理解。而在古代數學中,負數常常是在代數方程的求解過程中產生的。對古代巴比倫的代數研究發現,巴比倫人在解方程中沒有提出負數根的概念,即不用或未能發現負數根的概念。3世紀的希臘學者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳統數學中,已較早形成負數和相關的運演算法則。

除《九章算術》定義有關正負運算方法外,東漢末年劉烘(公元206年)、宋代揚輝(1261年)也論及了正負數加減法則,都與九章算術所說的完全一致。特別值得一提的是,元代朱世傑除了明確給出了正負數同號異號的加減法則外,還給出了關於正負數的乘除法則。

負數在國外得到認識和被承認,較之中國要晚得多。在印度,數學家婆羅摩笈多於公元628年才認識負數可以是二次方程的根。而在歐洲14世紀最有成就的法國數學家丘凱把負數說成是荒謬的數。直到十七世紀荷蘭人日拉爾(1629年)才首先認識和使用負數解決幾何問題。

與中國古代數學家不同,西方數學家更多的是研究負數存在的合理性。16、17世紀歐洲大多數數學家不承認負數是數。帕斯卡認為從0減去4是純粹的胡說。帕斯卡的朋友阿潤德提出一個有趣的說法來反對負數,他說(-1):1=1:(-1),那麼較小的數與較大的數的比怎麼能等於較大的數與較小的數比呢?直到1712年,連萊布尼茲也承認這種說法合理。英國數學家瓦里承認負數,同時認為負數小於零而大於無窮大(1655年)。他對此解釋到:因為a>0時,英國著名代數學家德·摩根 在1831年仍認為負數是虛構的。他用以下的例子說明這一點:「父親56歲,其子29歲。問何時父親年齡將是兒子的二倍?"他列方程56+x=2(29+x),並解得x=-2。他稱此解是荒唐的。當然,歐洲18世紀排斥負數的人已經不多了。隨著19世紀整數理論基礎的建立,負數在邏輯上的合理性才真正建立。

② 哪有賣 《高中數學基礎知識 新陽光基礎知識》

當當網上書店有

③ 揚州新華書店有沒有關於高中數學方法的資料

新華書店輔導書較少。
你可以到揚州中學附近轉轉,那裡書店較多。
——其中考試書店,揚子書店一般打八折,書也多,我們揚中的一般都去那兒。
那裡離新華書店很近的,高中數學資料多,不妨看看!

④ 新華書店的數學知識大全多少錢

小學14.4、高中15.5、考研28

⑤ 在新華書店可以買到什麼數學課外讀物

球面上的幾何
斯芬克斯之謎——超級數學推理游戲
所羅門王的智慧——加德納博士的36道推理謎題
數學游戲
神奇的e(e是高中內容,涉及對數)
還可以看看數學家的傳記
高中有數學史的專門選修課本 可以買來看看

⑥ 請教數學專業的老師介紹一本有關數學基礎理論和基本公式的書。

你到大型的新華書店裡面 一般都有的 很多版本的 不同地方銷售的一般都不大一樣的

⑦ 在新華書店可以買到什麼樣的數學方面的書

《推理與論證》 或 《邏輯原理》

⑧ 桂林新華書店關於奧數的參考書

感悟數學 曾聽一位奧數老師說過這么一句話:學數學,就猶如魚與網;會解一道題,就猶如捕捉到了一條魚,掌握了一種解題方法,就猶如擁有了一張網;所以,「學數學」與「學好數學」的區別就在與你是擁有了一條魚,還是擁有了一張網。 數學,是一門非常講究思考的課程,邏輯性很強,所以,總會讓人產生錯覺。 數學中的幾何圖形是很有趣的,每一個圖形都互相依存,但也各有千秋。例如圓。計算圓的面積的公式是S=∏r²,因為半徑不同,所以我們經常會犯一些錯。例如,「一個半徑為9厘米和一個半徑為6厘米的比薩餅等於一個半徑為15厘米的比薩餅」,在命題上,這道題目先迷惑大家,讓人產生錯覺,巧妙地運用了圓的面積公式,讓人產生了一個錯誤的天平。 其實,半徑為9厘米和一個半徑為6厘米的比薩餅並不等於一個半徑為15厘米的比薩餅,因為半徑為9厘米和一個半徑為6厘米的比薩餅的面積是S=∏r²=9²∏+6²∏=117∏,而半徑為15厘米的比薩餅的面積是S=∏r²=15²∏=225∏,所以,半徑為9厘米和一個半徑為6厘米的比薩餅是不等於一個半徑為15厘米的比薩餅的。 數學,就像一座高峰,直插雲霄,剛剛開始攀登時,感覺很輕松,但我們爬得越高,山峰就變得越陡,讓人感到恐懼,這時候,只有真正喜愛數學的人才會有勇氣繼續攀登下去,所以,站在數學的高峰上的人,都是發自內心喜歡數學的。 記住,站在峰腳的人是望不到峰頂的。