當前位置:首頁 » 基礎知識 » 數學語文知識大全

數學語文知識大全

發布時間: 2022-08-08 08:56:46

『壹』 小學數學知識大全

良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。

現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。

『貳』 尋幾個關於數學和語文的小故事或小知識

大約1500年前,歐洲的數學家們是不知道用「0」的。他們使用羅馬數字。羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。
而在當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,他非常高興,還把印度人使用「0」的方法向大家做了介紹。過了一段時間,這件事被當時的羅馬教皇知道了。當時是歐洲的中世紀,教會的勢力非常大,羅馬教皇的權利更是遠遠超過皇帝。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,如今誰要把它給引進來,誰就是褻瀆上帝!於是,教皇就下令,把這位學者抓了起來,並對他施加了酷刑,用夾子把他的十個手指頭緊緊夾注,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。
但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

小朋友你們可知道數學天才高斯小時候的故事呢?
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050>
從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!

在日常生活中,數學無處不在,比如說:買菜、賣菜、算多少錢……

下面就是一個小故事,是一個數字之間的故事。
有一天,數字卡片在一起吃午飯的時候,最小的一位說起話來了。
0弟弟說:「我們大傢伙兒,一起拍幾張合影吧,你們覺得怎麼樣?」
0的兄弟姐妹們一口齊聲的說:「好啊。」
8哥哥說:「0弟弟的主意可真不錯,我就做一回好人吧,我老8供應照相機和膠卷,好吧?」
老4說話了:「8哥,好是好,就是太麻煩了一點,到不如用我的數碼照相機,就這么定了吧。」
於是,它們變忙了起來,終於+號幫它們拍好了,就立刻把數碼照相機送往沖印店,沖是沖好了,電腦姐姐身手想它們要錢,可它們到底誰付錢呢?它們一個個獃獃的望著對方,這是電腦姐姐說:「一共5元錢,你們一共十一個兄弟姐妹,平均一人付多少元錢?」
在它們十一個人中,就數老六最聰明,這回它還是第一個算出了結果,你知道它是怎麼算出來的嗎?

唐僧師徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不長時間,徒弟三人摘完桃子高高興興回來。師父唐僧問:你們每人各摘回多少個桃子?
八戒憨笑著說:師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
沙僧神秘地說:師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
悟空笑眯眯地說:師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。你算算,我們每人摘多少個?
唐僧很快說出他們每人摘桃子的個數。你知道他們每人摘多少個桃子嗎?

『叄』 求初一數學語文英語的知識點

per month/week/year 每個月/星期/年

call sb at +號碼 打某人……電話

think over=think about=think of 考慮

a single room 一間單人房間

a double-room house 一間雙人房

a 3-bedroom house一間3卧室的房間

rent sth from sb. 向某人租….. 求租…

rent sth to sb. 租給某人…... 出租…..

around here 這周圍

on the street corner 在街角處

There is something wrong with…….

……有什麼毛病?

get sb to do sth.=ask sb to do sth.= let sb do sth. 讓某人做某事.

right now 馬上,立刻.

a lot of 許多.

be close to / be near與…接近

be far from 離…很遠

keep money 存錢

take trains 乘火車

mail letters 寄信

see the doctor 看病

hear sb doing sth . 聽到某人正做某事.

try to do sth. 試著做某事.

such a station 這樣的一個車站

move from…to… 從…移到/搬到…

at the end of… 在…末梢

on the right 在右邊

The traffic is heavy. 交通擁擠

enjoy doing sth.喜歡做某事

Unit 6 Topic 3

go /walk across =cross 穿過

on the corner of… 在…的拐彎處

(be) across from… 穿過…, 在…對面

on one』s /the way to

在(某人)去某地的路上

get to… 到達…get home /there/here

(be) far away from… 遠離…

need to do sth. 需要做某事

need do sth. 需要做某事

change to the No.1 bus.轉1路車。

a ticket for speeding(開車時)超速的罰單

thousands of 成千的,好幾千的

get hurt=be hurt受傷

in a road accident 在一次交通事故中

make the road safe 使交通安全

obey the traffic rules 遵守交通規則

keep on the right 保持向右行

be clear 安全的/清潔的

It is good to do sth 做某事很好

blind people 盲人

Unit7Topic 1

next / last Saturday 下星期六/ 上星期六

be fun/interesting 有趣

plan to do sth. 計劃做某事

want to do sth. 想要做某事

have a birthday party開一次生日晚會

Would you like sth.你想要……

Would you like to do sth. 你想要做某事

You bet./ Of course./ Sure./ Certainly.

當然啦

be born 出生

use sth for doing sth 用於作…

look up 查閱,查找

must be 一定是

Unit7Topic2

perform ballet 跳芭蕾舞

dance the disco跳迪斯科

take photos ( of…) 照相

sing songs for sb.為某人唱歌

take sth./sb. to sw 把某物帶到某處

take sth.with sb. 隨身帶上某物

work out 算出 work on 演算

fly a kite / fly kites 放風箏

one year ago 一年前 two years ago兩年前

play table tennis 打乒乓球

be good at (doing)sth 擅長做某事

have a good time 玩得很開心

Something is / was wrong with…

什麼有毛病

with the help of ….在……的幫助下

make model planes.製作模型飛機

Unit7Topic3

It』s one』s turn. 輪到某人了

What』s the matter?/What』s wrong?What』s up? 怎麼啦?

fall down 跌倒

happen to sb.發生在某人身上

go to a movie =see a film = go to the cinema

去看電影

lie to sb. 對某人說謊

tell a lie (to sb) 說謊 tell- told

talk about 談論 in fact 事實上

sit around… 圍坐在…

make the cards 做卡片

make a silent wish 默默許願

write a letter to sb. / write to sb.

寫信給某人

Unit 8 Topic 1

climb mountains = go climbing爬山

go hiking 踏青

make a snowman(snowmen) 做雪人

in spring / summer / fall / winter

在春/夏/秋/冬

like sth best 最喜歡

like sth better 更喜歡

nice and =very, quite 很,挺

all day 整天

be coming 就要來了

go on sth. 進行某事

go on a trip 進行旅行

go out 出去

take an umbrella 帶傘

wear sunglasses 帶太陽鏡

wear warm clothes 穿暖和的衣服

remember to do sth. 記住要去做某事

remember doing sth. 記住做過某事

(be) the same as 與……一樣

travel to sw. 旅遊到某地

wear an overcoat 穿一件大衣

come back to life 復甦, 復活

get warm 變暖和

a hopeful season. 一個充滿生機的季節。

A harvest season. 一個豐收的季節.

come after 來自……之後

be busy doing sth.忙於做….

last from…to…持續從……到

last for 持續

Unit 8 Topic2

travel around 周遊

take pictures/photos of… 拍……的照片

hope to do sth. / hope (that)+句子

希望做某事

next month 下個月

places of interest 名勝

each of us 我們中的每一個人

tell sb sth.about告訴某人關於……某事

take off 拖掉,起飛

point to 指點

touch a child on the head 摸小孩的頭

do some touring 觀光

do some shopping/cleaning

買東西/做衛生

need to do sth.需做某事

give sth. to sb. /give sb.sth. 給某人某物

pass sth.to sb. /pass sb. sth. 遞某物給某人

be friendly to sb 對某人友好

be different from 與……不同

Unit 8 Topic3

make mpings 做餃子

each other 相互,互相

have families get together.舉行家庭聚會

on this day 在這一天 good luck 好運

stay up 熬夜 send sth. to sb. 送某人某物

play tricks on sb.= trick on sb 開某人玩笑

pick up摘,撿起 knock at/ on 敲

on the night of 在……夜晚

go touring / shopping 去旅行/ 購物

enjoy a seven-day holiday享受7天的假期

hold dragon boat races舉行龍舟賽

the capital of ……的首都,…….的省會

go up 升起

Best wishes to sb.! 致某人最好的祝願

on the eve of 在……前夕

at midnight 在午夜

put up 掛

with

最令某人高興的是 To one』s joy

取得很大的進步

在戶外in the open air

與某人聊天 chat with

互相 each other =with one another

與某人相聚 have a get-together with

很快,馬上 (at)any minute now

及時 in time

匆忙in a hurry

動身,出發 set off

朝回走 head back

朝回家的路走 head back home

有一個美好的未來 have a great future

期望做某事 look forward to doing sth.

給某人一個擁抱 give a hug to sb.

旅途平安 Have a safe flight!

出去散步 go out for a walk

『肆』 小學六年級語文和數學知識

1.改正下面句中的錯別字。
跳躍的小溪,一路嬉鬧喧嘩,唱著歌兒,從大山腳下流淌而過。( )
2.(1)我希望我能成功。
(2)每一個人都應該遵守諾言
3.仿寫句子:如果我是陽光,我將照亮所有的黑暗。
如果我是春風,我將帶來勃勃的生機。
如果我是花朵,我將裝點美麗的世界。

數學:1.過一點到已知直線的線段中(垂線段)最短。
2.下面的現象中是平移的有(A B ,E ),是旋轉的有(C D F )。
A.狗拉雪橇 B.升國旗 C.開瓶蓋 D.單擺運動 E.拉出抽屜 F.轉動方向盤

『伍』 求一些初中的語文,數學的基本知識

語文學習分四大部分
第一部分:語文基礎知識
語文基礎知識包括:字、詞、句(語法、標點、修辭)、文體知識、文學常識五個方面。

知識要點

一、字

1.字音:

漢語拼音規則,及容易讀錯的字。

掌握帶寫規則的重點字,這些字的音節拼寫對了,就可以達到觸類旁通、舉一反三的效果。這些字分別是:

(1)維、會、溫、駝、優、流的拼寫規則

(2)英、呀、煙、葉、暈的拼寫規則

(3)公、榮、雄、翁、擁、窘的拼寫規則

(4)女、綠、掠、虐、與、機、區、需、魚的區別。

除此之外,再注意拼寫的隔音符號,皮襖pí ǎo兒化標音花兒huār輕聲不標詞。

『陸』 高中文科數學知識點大全

高中作文語言不能太平淡,添加一些華麗的辭藻,華美的語句能加分不少。我推薦早自習可以朗誦一些現代詩歌,比如散文詩,裡面全是非常優美華麗的語句,堅持一段時間後漸漸就會有語感,語言就慢慢豐滿華潤,不再是乾巴巴的,繼續堅持,你就會發現寫作文不再那麼難,而且分數也會慢慢提高。我高一高二時語文成績一直90——100之間,後來作文上來了,幾乎60分的作文每次都能拿到50分以上,很快就突破110分了,高考時考了126分,給我很大幫助。
對於數學,其實要善於總結,將同一類型的題目歸納到一起,寫到筆記本上,慢慢積累後,做題就很簡單了。但是要對基本知識要非常熟練,數學上課我基本不聽講,就在下面作總結,每次考試都在130-140,但是高考發揮不佳,只拿了120多分。
希望對你有點幫助。

『柒』 小學數學和語文必掌握的知識點分別有哪些

小學語文必掌握的知識點:1.修辭。2標點。3各種句式以及互換。4學會修改病句。5關聯詞。6書本上重點詞語。

『捌』 求中考數學物理英語和語文的中考知識點總匯

數學

初中代數是使學生在小學數學的基礎上,把數的范圍從非負有理數擴充到有理數、實數;通過用字母表示數,學習代數式、方程和不等式、函數等,學習一些常用的數據處理方法算表或計算器的使用方法;發展對於數量關系的認識和抽象概括的思維,提高運算能力。

初中代數的教學要求①是:

1.使學生了解有理數、實數的有關概念,熟練掌握有理數的運演算法則,靈活運用運算律簡化運算;會查平方表、立方表、平方根表、立方根表或用計算器代替算表。

2.使學生了解有關代數式、整式、分式和二次根式的概念,掌握它們的性質和運演算法則,能夠熟練地進行整式、分式和二次根式的運算以及多項式的因式分解。

3.使學生了解有關方程、方程組的概念;靈活運用一元一次方程、二元一次方程組和一元二次方程的解法解方程和方程組,掌握分式方程和簡單的二元二次方程組的解法,理解一元二次方程的根的判別式。能夠分析等量關系列出方程或方程組解應用題。

使學生了解一元一次不等式、一元一次不等式組的概念,會解一元一次不等式和一元一次不等式組,並把它們的解集在數軸上表示出來。

4.使學生理解平面直角坐標系的概念,了解函數的意義,理解正比例函數、反比例函數、一次函數的概念和性質,理解二次函數的概念,會根據性質畫出正比例函數、一次函數的圖象,會用描點法畫出反比例函數、二次函數的圖象。

5.使學生了解統計的思想,掌握一些常用的數據處理方法,能夠用統計的初步知識解決一些簡單的實際問題。

6.使學生掌握消元、降次、配方、換元等常用的數學方法,解決某些數學問題,理解「特殊——一般——特殊」、「未知——已知」、用字母表示數、數形結合和把復雜問題轉化成簡單問題等基本的思想方法。

7.使學生通過各種運算和對代數式、方程、不等式的變形以及重要公式的推導,通過用概念、法則、性質進行簡單的推理,發展邏輯思維能力。

8.使學生了解已知與未知、特殊與一般、正與負、等與不等、常量與變數等辯證關系,以及反映在函數概念中的運動變化觀點。了解反映在數與式的運算和求方程解的過程中的矛盾轉化的觀點。同時,利用有關的代數史料和社會主義建設成就,對學生進

行思想教育。

教學內容①和具體要求如下。

(一)有理數

l·有理數的概念

有理數。數軸。相反數。數的絕對值。有理數大小的比較。

具體要求:

(1)了解有理數的意義,會用正數與負數表示相反意義的量,以及按要求把給出的有理數歸類。

(2)了解數軸、相反數、絕對值等概念和數軸的畫法,會用數軸上的點表示整數或分數(以刻度尺為工具),會求有理數的相反數與絕對值(絕對值符號內不含字母)。

(3)掌握有理數大小比較的法則,會用不等號連接兩個或兩個以上不同的有理數。

2。有理數的運算

有理數的加法與減法。代數和。加法運算律。有理數的乘法與除法。倒數。乘法運算律。有理數的乘方。有理數的混合運算。

科學記數法。近似數與有效數字。平方表與立方表。

具體要求:

(1)理解有理數的加、減、乘、除、乘方的意義,熟練掌握有理數的運演算法則、運算律、運算順序以及有理數的混合運算,靈活運用運算律簡化運算。

(2)了解倒數概念,會求有理數的倒數。

(3)掌握大於10的有理數的科學記數法。

(4)了解近似數與有效數字的概念,會根據指定的精確度或有效數字的個數,用四舍五人法求有理數的近似數;會查平方表與立方表。

(5)了解有理數的加法與減法、乘法與除法可以相互轉化。

(二)整式的加減

代數式。代數式的值。整式。

單項式。多項式。合並同類項。

去括弧與添括弧。數與整式相乘。整式的加減法。

具體要求:

(1)掌握用字母表示有理數,了解用字母表示數是數學的一

大進步。

(2)了解代數式、代數式的值的概念,會列出代數式表示簡單的數量關系,會求代數式的值。

(3)了解整式、單項式及其系數與次數、多項式次數、項與項數的概念,會把一個多項式接某個字母降冪排列或升冪排列。

(4)掌握合並同類項的方法,去括弧、添括弧的法則,熟練掌握數與整式相乘的運算以及整式的加減運算。

(5)通過用字母表示數、列代數式和求代數式的值、整式的加減,了解抽象概括的思維方法和特殊與一般的辯證關系。

(三)一元一次方程

等式。等式的基本性質。方程和方程的解。解方程。

一元一次方程及其解法。

一元一次方程的應用。

具體要求:

(1)了解等式和方程的有關概念,掌握等式的基本性質,會檢驗一個數是不是某個一元方程的解。

(2)了解一元一次方程的概念,靈活運用等式的基本性質和移項法則解一元一次方程,會對方程的解進行檢驗。

(3)能夠找出簡單應用題中的未知量和已知量,分析各量之間的關系,並能夠尋找等量關系列出一元一次方程解簡單的應用題,會根據應用題的實際意義,檢查求得的結果是否合理。

(4)通過解方程的教學,了解「未知」可以轉化為「已知」的思想方法。

(四)二元一次方程組

二元一次方程及其解集。方程組和它的解。解方程組。

用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。

一次方程組的應用。

具體要求:

(1)了解二元一次方程的概念,會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式,會檢查一對數值是不是某個二元一次方程的一個解。

(2)了解方程組和它的解、解方程組等概念;會檢驗一對數值是不是某個二元一次方程組的一個解。

(3)靈活運用代人法、加減法解二元一次方程組,並會解簡單的三元一次方程組。

(4)能夠列出二元、三元一次方程組解簡單的應用題。

(5)通過解方程組,了解把「三元」轉化為「二元」,把「二元」轉化為「一元」的消元的思想方法,從而初步理解把「未知」轉化為「已知」和把復雜問題轉化為簡單問題的思想方法。

(五)一元一次不等式和一元一次不等式組

I·一元一次不等式

不等式。不等式的基本性質。不等式的解集。一元一次不等式及其解法。

具體要求:

(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性質,理解它們與等式基本性質的異同。

(2)了解不等式的解和解集概念,理解它們與方程的解的區別,會在數軸上表示不等式的解集。

(3)會用不等式的基本性質和移項法則解一元一次不等式。

2·一元一次不等式組

一元一次不等式組及其解法。

具體要求:

(1)了解一元一次不等式組及其解集的概念,理解一元一次不等式組與一元一次不等式的區別和聯系。

(2)掌握一元一次不等式組的解法,會用數軸確定一元一次不等式組的解集。

(六)整式的乘除

l·整式的乘法

同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式:

(a十b)(a一b)=a2-b2

(a±b)2=a2±2ab+b2

(a±b)(a2±ab+ b2)=a3±b3

具體要求:

(1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。

(2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。

(3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。

(4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解「特殊———一般——一特殊」的認識規律。

2·整式的除法

同底數冪的除法。單項式除以單項式。多項式除以單項式。

具體要求:

(1)掌握同底數冪的除法運算性質,會用它熟練地進行運算。

(2)掌握單項式除以單項式、多項式除以單項式的法則,會用它們進行運算。

(3)會進行整式的加、減、乘、除、乘方的較簡單的混合運算,靈活運用運算律與乘法公式使運算簡便。

(七)因式分解

因式分解。提公因式法。運用(乘法)公式法。分組分解法。十字相乘法。多項式因式分解的一般步驟。

具體要求:

(1)了解因式分解的意義及其與整式乘法的區別和聯系,了

解因式分解的一般步驟。

(2)掌握提公因式法(字母的指數是數字)、運用公式法(直接用公式不超過兩次)、分組分解法(分組後能直接提公因式或運用公式的多項式,無需拆項或添項)和十字相乘法(二次項系數與常數項的積為絕對值不大於60的整系數二次三項式)這四種分解因式的基本方法,會用這些方法進行團式分解。

(八)分式

1.分式

分式。分式的基本性質。約分。最簡分式。

分式的乘除法。分式的乘方。

同分母的分式加減法。通分。異分母的分式加減法。

具體要求:

(l)了解分式、有理式、最簡分式、最簡公分母的概念,掌握分式的基本性質,會熟練地進行約分和通分。

(2)掌握分式的加、減與乘、除、乘方的運演算法則,會進行簡單的分式運算。

2.零指數與負整數指數

零指數。負整數指數。整數指數冪的運算。

具體要求:

(l)了解零指數和負整數指數冪的意義;了解正整數指數冪的運算性質可以推廣到整數指數冪,掌握整數指數冪的運算。

(2)會用科學記數法表示數。

(九)可他為一元一次方程的公式方程

含有字母系數的一元一次方程。公式變形。

分式方程。增根。可化為一元一次方程的分式方程的解法與

應用。

具體要求:

(1)掌握含有字母系數的一元一次方程的解法和簡單的公式變形。

(2)了解分式方程的概念,掌握用兩邊同乘最簡公分母的方法解可化為一元一次方程的分式方程(方程中的分式不超過三個);了解增根的概念,會檢驗一個數是不是分式方程的增根。

(3)能夠列出可化為一元一次方程的分式方程解簡單的應用題。

(十)數的開方

1.平方根與立方根

平方根。算術平方根。平方根表。

立方根。立方根表。

具體要求:

(1)了解平方根、算術平方根、立方根的概念,以及用根號表示數的平方根、算術平方根和立方根。

(2)了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根和算術平方根,用立方運算求某些數的立方根。

(3)會查表求平方根和立方根(有條件的學校可使用計算器)。

2.實數

無理數。實數。

具體要求:

( 1)了解無理數與實數的概念,會把給出的實數按要求進行歸類;了解實數的相反數、絕對值的意義,以及實數與數軸上的點—一對應。

(2)了解有理數的運算律在實數運算中同樣適用;會按結果所要求的精確度用近似的有限小數代替無理數進行實數的四則運算。

(3)結合我國古代數學家對。的研究,激勵學生科學探求的精神和愛國主義的精神。

(十一)二次根式

二次根式。積與商的方根的運算性質。

二次根式的性質。

最簡二次根式。同類二次根式。二次根式的加減。二次根式的乘法。二次根式的除法。分母有理化。

具體要求:

(1)了解二次根式、最簡二次根式、同類二次根式的概念,會辨別最簡二次根式和同類二次根式。

(2)掌握積與商的方根的運算性質

會根據這兩個性質熟練地化簡二次根式(如無特別說明,根號內所有的字母都表示正數,並且不需要討論).

(3)掌握二次根式(不含雙重根號)的加、減、乘、除的運演算法則,會用它們進行運算。

(4)會將分母中含有一個或兩個二次根式的式於進行分母有理化。

*(5)掌握二次根式的性質

會利用它化簡二次根式

(十二)一元二次方程

1.一元二次方程

一元二次方程。一元二次方程的解法:直接開平方法,配方法,公式法,因式分解法。

一元二次方程的根的判別式。

*①一元二次方程根與系數的關系。

二次三項式的因式分解(公式法)。

一元二次方程的應用。

具體要求:

(1)了解一元二次方程的概念,會用直接開平方法解形如

(x-a)2=b(b≥0)的方程,用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程。靈活運用一元二次方程的四種解法求方程的根。

(2)理解一元二次方程的根的判別式,會根據根的判別式判斷數字系數的一元二次方程的根的情況。

*(3)掌握一元二次方程根與系數的關系式,會用它們由已知一元二次方程的一個根求出另一個根與未知系數,會求一元二次方程兩個根的倒數和與平方和。

(4)了解二次三項式的因式分解與解方程的關系,會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式。

(5)能夠列出一元二次方程解應用題。

(6)結合教學內容進一步培養學生的思維能力,對學生進行辯證唯物主義觀點的教育。

2.可化為一元二次方程的方程

可化為一元二次方程的分式方程。

* 可化為一元一次、一元二次方程的無理方程。

具體要求:

(1)掌握可化為一元二次方程的分式方程(方程中的分式不超過三個)的解法,會用去分母或換元法求分式方程的解,並會驗根。

(2)能夠列出可化為一元二次方程的分式方程解應用題。

*(3)了解無理方程的概念,掌握可化為一元一次、一元一二次方程的無理方程(方程中含有未知數的二次根式不超過兩個)的解法,會用兩邊平方或換元法求無理方程的解,並會驗根。

(4)通過可化為一元二次方程的分式方程、無理方程的教學,使學生進一步獲得對事物可以轉化的認識。

3.簡單的二元二次方程組

二元二次方程。二元二次方程組。

由一個二元一次方程和一個二元二次方程組成的方程組的解法。

* 由一個二元二次方程和一個可以分解為兩個二元一次方程

的方程組成的方程組的解法。

具體要求:

(l)了解二元二次方程、二元二次方程組的概念,掌握由一個二元一次方程和一個二元二次方程組成的方程組的解法,會用代人法求方程組的解。

*(2)掌握由一個二元二次方程和一個可以分解為兩個二元一次方程的方程組成的方程組的解法。

(3)通過解簡單的二元二次方程組,使學生進一步理解「.消元」、「降次」的數學方法,獲得對事物可以轉化的進一步認識。

(十三)函數及其圖象

1·函數

平面直角坐標系。常量。變數。函數及其表示法。

具體要求:

(l)理解平面直角坐標系的有關概念,並會正確地畫出直角坐標系;理解平面內點的坐標的意義,會根據坐標確定點和由點求得坐標。了解平面內的點與有序實數對之間—一對應。

(2)了解常量、變數、函數的意義,會舉出函數的實例,以及分辨常量與變數、自變數與函數。

(3)理解自變數的取值范圍和函數值的意義,對解析式為只含有一個自變數的簡單的整式、分式、二次根式的函數,會確定它們的自變數的取值范圍和求它們的函數值。

(4)了解函數的三種表示法,會用描點法畫出函數的圖象。

(5)通過函數的教學,使學生體會事物是互相聯系和有規律地變化著的,並向學生滲透數形結合的思想方法。

2·正比例函數和反比例函數

正比例函數及其圖象。反比例函數及其圖象。

具體要求:

(1)理解正比例函數、反比例函數的概念,能夠根據問題中的條件確定正比例函數和反比例函數的解析式。

(2)理解正比例函數、反比例函數的性質,會畫出它們的圖象,以及根據圖象指出函數值隨自變數的增加或減小而變化的情況。

(3)理解待定系數法。會用待定系數法求正、反比例函數的解析式。

3.一次函數的圖象和性質

一次函數。一次函數的圖象和性質。

△①二元一次方程組的圖象解法。

具體要求:

(1)理解一次函數的概念,能夠根據實際問題中的條件,確

定一次函數的解析式。

(2)理解一次函數的性質,會畫出它的圖象。

△(3)會用圖象法求二元一次方程組的近似解。

(4)會用待定系數法求一次函數的解析式。

4·二次函數的圖象

二次函數。拋物線的頂點、對稱軸和開口方向。

西一元二次方程的圖象解法。

具體要求:

(l)理解二次函數和拋物線的有關概念,會用描點法畫出二

次函數的圖象,會用公式(。配方法)確定拋物線的頂點和對稱

軸。

△(2)會用圖象法求一元二次方程的近似解。

*(3)會用待定系數法由已知圖象上三個點的坐標求二次函

數的解析式。

(十四)統計初步

總體和樣本。眾數。中位數。平均數。方差與標准差。方差的簡化計算。頻率分布。

實習作業。

具體要求:

(1)了解總體、個體、樣本、樣本容量等概念,能夠指出研究對象的總體、個體和樣本。

(2)理解眾數、中位數的意義,掌握它們的求法。

(3)理解平均數的意義,了解總體平均數和樣本平均數的意義,掌握平均數的計算公式;理解加權平均數的概念,掌握它的計算公式;會用樣本平均數估計總體平均數。

(4)了解樣本方差、總體方差、樣本標准差的意義,會計算(可使用計算器)樣本方差和樣本標准差,會根據同類問題的兩組樣本數據的方差或樣本標准差比較這兩組樣本數據的波動情況。

(5)理解頻數、頻率的概念,了解頻率分布的意義和作用,掌握整理數據的步驟和方法,會對數據進行合理的分組,列出樣本頻率分布表,畫出頻率分布直方圖。

△(6)會用科學計算器求樣本平均數與標准差。

(7)通過實習作業,使學生初步掌握搜集、整理和分析數據的方法,培養解決實際問題的能力。

(8)通過統計初步的教學,使學生了解用樣本估計總體的數理統計的基本思想,並培養學生用數學的意識,踏實細致的作風和實事求是的科學態度。

初中幾何是在小學數學中幾何初步知識的基礎上,使學生進

一步學習基本的平面幾何圖形知識,向他們直觀地介紹一些空間

幾何圖形知識。初中幾何將邏輯性與直觀性相結合,通過各種圖

形的概念、性質、作(畫)圖及運算等方面的教學,發展學生的

邏輯思維能力、空間觀念和運算能力,並使他們初步獲得研究幾

何圖形的基本方法。

幾 何

初中幾何的教學要求是:

1.使學生理解有關相交線、平行線、三角形、四邊形、圓,以及全等三角形、相似三角形的概念和性質,掌握用這些概念和性質對簡單圖形進行論證和計算的方法。了解關於軸對稱、中心對稱的概念和性質。理解銳角三角函數的意義,會用銳角三角函數和勾股定理解直角三角形。

2.使學生會用直尺、圓規、刻度尺、三角尺、量角器等工具作和畫幾何圖形。

3.使學生通過具體模型,了解空間的直線、平面的平行與垂直關系,並會用展開圖和面積公式計算圓柱和圓錐的側面積和全面積。

4·逐步培養學生觀察、比較、分析、綜合、抽象、概括的能力,逐步使學生掌握簡單的推理方法,從而提高學生的邏輯思維能力。

5.通過辨認圖形、畫圖和論證的教學,進一步培養學生的空間觀念。

6.通過揭示幾何知識來源於實踐又應用於實踐的關系,以及幾何概念、性質之間的聯系和圖形的運動、變化,對學生進行辯證唯物主義的教育。利用有關的幾何史料和社會主義建設成就,對學生進行思想教育。通過論證與畫圖的教學,逐步培養學生嚴謹的科學態度,並使他們獲得美的感受。

教學內容和具體要求如下:

(一)線段、角

1·幾何圖形

幾何體。幾何圖形。點。直線。平面。

具體要求:

(1)通過具體模型(如長方體)了解從物體外形抽象出來的幾何體、平面、直線和點等。

(2)了解幾何圖形的有關概念。了解幾何的研究對象。

(3)通過幾何史料的介紹,對學生進行幾何知識來源於實踐的教育和愛國主義教育,使學生了解學習幾何的必要性,從而激發他們學習幾何的熱情。

2.線段

兩點確定一條直線。相交線。

線段。射線。線段大小的比較。線段的和與差。線段的中點。

具體要求:

(1)掌握兩點確定一條直線的性質。了解兩條相交直線確定一個交點。

(2)了解直線、線段和射線等概念的區別。

(3)理解線段的和與差及線段的中點等概念,會比較線段的大小。

(4)理解兩點間的距離的概念,會度量兩點間的距離。

3.角

角。角的度量。角的平分線。 小於平角的角的分類。

具體要求:

(1)理解角的概念。掌握角的平分線的概念,會比較角的大小。會用量角器畫一個角等於已知角。

(2)掌握度、分、秒的換算。會計算角度的和、差、倍、分。

(3)理解周角、平角、直角、銳角、鈍角的概念,並會進行有關的計算。

(4)掌握角的平分線的概念。會畫角的平分線。

(5)掌握幾何圖形的符號表示法。會根據幾何語句准確、整潔地畫出相應的圖形,會用幾何語句描述簡單的幾何圖形。

(二)相交、平行

l·相交線

對頂角。鄰角、補角。

垂線。點到直線的距離。

同位角。內錯角。同旁內角。

具體要求:

(1)理解對頂角的概念。理解對頂角的性質和它的推證過程,會用它進行推理和計算。

(2)理解補角、鄰補角的概念,理解同角或等角的補角相等的性質和它的推證過程,會用它進行推理和計算。

(3)掌握垂線、垂線段等概念;會用三角尺或量角器過一點畫一條直線的垂線。了解斜線、斜線段等概念,了解垂線段最短的性質。

(4)掌握點到直線的距離的概念,並會度量點到直線的距離。

(5)會識別同位角、內錯角和同旁內角。

2.平行線 平行線。

平行線的性質及判定。

具體要求:

(1)了解平行線的概念及平行線的基本性質。會用平行的傳遞性進行推理。

(2)會用一直線截兩平行直線所得的同位角相等、內錯角相等、同旁內角互補等性質進行推理和計算;會用同位角相等,或內錯角相等,或同旁內角互補判定兩條直線平行。

(3)會用三角尺和直尺過已知直線外一點畫這條直線的平行線。

(4)理解學過的描述圖形形狀和位置關系的語句,並會用這些語句描述簡單的圖形和根據語句畫圖。

3.空間直線、平面的位置關系

直線與直線,直線與平面,平面與平面的位置關系。

具體要求:

通過長方體的棱、對角線和各面之間的位置關系,了解直線與直線的平行、相交、異面的關系,以及直線與平面、平面與平面的平行、垂直關系。

4.命題、定義、公理、定理

命題。定義。公理。定理。

定理的證明。

具體要求:

(1)了解命題的概念,會區分命題的條件(題設)和結論(題斷),會把命題改寫成「如果…』··,那麼」』…」的形式。

(2)了解定義、公理、定理的概念。

(3)了解證明的必要性和推理過程中要步步有據,了解綜合法證明的格式。 (三)三角形

1.三角形

三角形。三角形的角平分線、中線、高。三角形三邊間的不等關系。三角形的內角和。三角形的分類。

具體要求:

(1)理解三角形,三角形的頂點、邊、內角、外角、角平分線、中線和高等概念,會畫出任意三角形的角平分線、中線和高。

(2)理解三角形的任意兩邊之和大於第三邊的性質。會根據三條線段的長度判斷它們能否構成三角形。

(3)掌握三角形的內角和定理,三角形的外角等於不相鄰的兩內角的和,三角形的外角大於任何一個和它不相鄰的內角的性質。

(4)會按角的大小和邊長的關系對三角形進行分類。

2.全等三角形

全等形。全等三角形及其性質。三角形全等的判定。

具體要求:

(1)了解全等形、全等三角形的概念和性質,能夠辨認全等

形中的對應元素。

(2)能夠靈活運用「邊、角、邊」,「角、邊、角」,「角、角、邊」,「邊、邊、邊」等來判定三角形全等;會證明「角、角、邊」定理。了解三角形的穩定性。

(3)會用三角形全等的判定定理來證明簡單的有關問題,並會進行有關的計算。

有什麼不明白的地方再問我。

謝謝!!!
參考資料:http://..com/question/27836101.html?fr=qrl3

http://..com/question/11306552.html?fr=qrl3

『玖』 求高中數學(文科)最基礎知識

數學高考基礎知識、常見結論詳解

一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
集合元素的互異性:如: , ,求 ;
(2)集合與元素的關系用符號 , 表示。
(3)常用數集的符號表示:自然數集 ;正整數集 、 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
注意:區分集合中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的集合。( 、 和 的區別;0與三者間的關系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:條件為 ,在討論的時候不要遺忘了 的情況。
如: ,如果 ,求 的取值。
二、集合間的關系及其運算
(1)符號「 」是表示元素與集合之間關系的,立體幾何中的體現 點與直線(面)的關系 ;
符號「 」是表示集合與集合之間關系的,立體幾何中的體現 面與直線(面)的關系 。
(2) ; ;

(3)對於任意集合 ,則:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 為偶數,則 ;若 為奇數,則 ;
②若 被3除餘0,則 ;若 被3除餘1,則 ;若 被3除餘2,則 ;
三、集合中元素的個數的計算:
(1)若集合 中有 個元素,則集合 的所有不同的子集個數為_________,所有真子集的個數是__________,所有非空真子集的個數是 。
(2) 中元素的個數的計算公式為: ;
(3)韋恩圖的運用:
四、 滿足條件 , 滿足條件 ,
若 ;則 是 的充分非必要條件 ;
若 ;則 是 的必要非充分條件 ;
若 ;則 是 的充要條件 ;
若 ;則 是 的既非充分又非必要條件 ;
五、原命題與逆否命題,否命題與逆命題具有相同的 ;
注意:「若 ,則 」在解題中的運用,
如:「 」是「 」的 條件。
六、反證法:當證明「若 ,則 」感到困難時,改證它的等價命題「若 則 」成立,
步驟:1、假設結論反面成立;2、從這個假設出發,推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結論正確。
矛盾的來源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個恆假命題。
適用與待證命題的結論涉及「不可能」、「不是」、「至少」、「至多」、「唯一」等字眼時。
正面詞語 等於 大於 小於 是 都是 至多有一個
否定

正面詞語 至少有一個 任意的 所有的 至多有n個 任意兩個
否定

二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
如:若 , ;問: 到 的映射有 個, 到 的映射有 個; 到 的函數有 個,若 ,則 到 的一一映射有 個。
函數 的圖象與直線 交點的個數為 個。
二、函數的三要素: , , 。
相同函數的判斷方法:① ;② (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
① ,則 ; ② 則 ;
③ ,則 ; ④如: ,則 ;
⑤含參問題的定義域要分類討論;
如:已知函數 的定義域是 ,求 的定義域。
⑥對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。如:已知扇形的周長為20,半徑為 ,扇形面積為 ,則 ;定義域為 。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
求下列函數的值域:① (2種方法);
② (2種方法);③ (2種方法);
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱;
如: 的圖象如圖,作出下列函數圖象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) 。
五、反函數:
(1)定義:
(2)函數存在反函數的條件: ;
(3)互為反函數的定義域與值域的關系: ;
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系: ;
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
如:求下列函數的反函數: ; ;
七、常用的初等函數:
(1)一元一次函數: ,當 時,是增函數;當 時,是減函數;
(2)一元二次函數:
一般式: ;對稱軸方程是 ;頂點為 ;
兩點式: ;對稱軸方程是 ;與 軸的交點為 ;
頂點式: ;對稱軸方程是 ;頂點為 ;
①一元二次函數的單調性:
當 時: 為增函數; 為減函數;當 時: 為增函數; 為減函數;
②二次函數求最值問題:首先要採用配方法,化為 的形式,
Ⅰ、若頂點的橫坐標在給定的區間上,則
時:在頂點處取得最小值,最大值在距離對稱軸較遠的端點處取得;
時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;
Ⅱ、若頂點的橫坐標不在給定的區間上,則
時:最小值在距離對稱軸較近的端點處取得,最大值在距離對稱軸較遠的端點處取得;
時:最大值在距離對稱軸較近的端點處取得,最小值在距離對稱軸較遠的端點處取得;
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
③二次方程實數根的分布問題: 設實系數一元二次方程 的兩根為 ;則:
根的情況
等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根
充要條件
注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分布的情況,得出結果,在令 和 檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數運演算法則: ; ; 。
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
指數運演算法則: ; ; ;
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:(1) 與 的圖象關系是 ;
(2)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
(3)已知函數 的定義域為 ,求 的取值范圍。
已知函數 的值域為 ,求 的取值范圍。
六、 的圖象:
定義域: ;值域: ; 奇偶性: ; 單調性: 是增函數; 是減函數。
七、補充內容:
抽象函數的性質所對應的一些具體特殊函數模型:
① 正比例函數
② ; ;
③ ; ;
④ ;
三、導 數
1.求導法則:
(c)/=0 這里c是常數。即常數的導數值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
一 與 為增函數的關系。
能推出 為增函數,但反之不一定。如函數 在 上單調遞增,但 ,∴ 是 為增函數的充分不必要條件。
二 時, 與 為增函數的關系。
若將 的根作為分界點,因為規定 ,即摳去了分界點,此時 為增函數,就一定有 。∴當 時, 是 為增函數的充分必要條件。
三 與 為增函數的關系。
為增函數,一定可以推出 ,但反之不一定,因為 ,即為 或 。當函數在某個區間內恆有 ,則 為常數,函數不具有單調性。∴ 是 為增函數的必要不充分條件。
函數的單調性是函數一條重要性質,也是高中階段研究的重點,我們一定要把握好以上三個關系,用導數判斷好函數的單調性。因此新教材為解決單調區間的端點問題,都一律用開區間作為單調區間,避免討論以上問題,也簡化了問題。但在實際應用中還會遇到端點的討論問題,要謹慎處理。
四單調區間的求解過程,已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能准確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值 f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用於研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。
2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
四、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。
④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
若 ,則 (當且僅當 時取等號)
基本變形:① ; ;
②若 ,則 ,
基本應用:①放縮,變形;
②求函數最值:注意:①一正二定三取等;②積定和小,和定積大。
當 (常數),當且僅當 時, ;
當 (常數),當且僅當 時, ;
常用的方法為:拆、湊、平方;
如:①函數 的最小值 。
②若正數 滿足 ,則 的最小值 。
三、絕對值不等式:
注意:上述等號「=」成立的條件;
四、常用的基本不等式:
(1)設 ,則 (當且僅當 時取等號)
(2) (當且僅當 時取等號); (當且僅當 時取等號)
(3) ; ;
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。
⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因導果。
(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有:
⑴添加或捨去一些項,如: ;
⑵將分子或分母放大(或縮小)
⑶利用基本不等式,如: ;

⑷利用常用結論:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。如:
已知 ,可設 ;
已知 ,可設 ( );
已知 ,可設 ;
已知 ,可設 ;
(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,則 ;⑵若 ,則 ;
Ⅱ、 :⑴若 ,則 ;⑵若 ,則 ;
(2)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(5)絕對值不等式:若 ,則 ; ;
注意:(1).幾何意義: : ; : ;
(2)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;①若 則 ;②若 則 ;③若 則 ;
(3).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(4).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(6)分式不等式的解法:通解變形為整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(8)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數,要分 、 、 討論。

五、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
26. 在等差數列 中:
(1)若項數為 ,則
(2)若數為 則, ,
27. 在等比數列 中:
(1) 若項數為 ,則
(2)若數為 則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性 如an=
33、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
六、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
以向量 = 、 = 為鄰邊作平行四邊形ABCD,則兩條對角線的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
+0= +(- )=0.
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.
(3)若 =( ),則 · =( ).
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。
七、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

具體的公式
http://www.ggjy.net/xspd/xsbk/200408/815.html
高中數學公式大全
http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc
高中數學常用公式及常用結論

高中數學常用公式及常用結論

高中數學常用公式及常用結論

1. 元素與集合的關系
, .
2.德摩根公式
.
3.包含關系

4.容斥原理

.
5.集合 的子集個數共有 個;真子集有 –1個;非空子集有 –1個;非空的真子集有 –2個.
6.二次函數的解析式的三種形式
(1)一般式 ;
(2)頂點式 ;
(3)零點式 .
7.解連不等式 常有以下轉化形式

.
8.方程 在 上有且只有一個實根,與 不等價,前者是後者的一個必要而不是充分條件.特別地, 方程 有且只有一個實根在 內,等價於 ,或 且 ,或 且 .
9.閉區間上的二次函數的最值
二次函數 在閉區間 上的最值只能在 處及區間的兩端點處取得,具體如下:
(1)當a>0時,若 ,則 ;
, , .
http://www.ggjy.net/xspd/student/200481211513358.rar

經測試可用,不過不一定是文科用的~

另提供一網站作參考:http://www.happycampus.cn/pages/2004/01/27/D128361.html

『拾』 小學一年級下冊語文和數學的知識點有哪些

第四單元 分類:1。任何事物都有自己的所屬的類別,根據這些類別將同類的事物分在一起就是分類,而這些類別就是我們分類的標准,2,分類的步驟和方法。

(1)給定標准:當已知分類標准時,我們只需要判斷所給的事物是屬於哪個類別的,然後將同一類的事物放在一起即可。

(2)未給定標准:當有很多物體擺在面前,讓我們自己確定類別分類時,應首先觀察每個物體都有什麼樣的特點,把具有相同特點的特點的物體放在一起,表示同一類,而這些特點就是分類的標准。

(3),分類的方法是多種多樣的。我們可以根據不同的標准分類,可以根據物體的形狀。顏色。作用等將物體分類。(1)把同一類的物體圈起來。(2)同類的物體畫符號「○」「√」。(3)同類的物體番號填在一起。

第五單元,位置與順序

1.物體的位置。 (1)上和下:以圖形為列。在什麼上面;在什麼下面。(2)左和右:同樣以圖形為例在什麼左邊;在什麼右邊。2。物體的順序。前和後:確定目的地後,更靠近目的地的稱作在前面,遠離目的地的稱作在後面。3,確定物體位置與順序的方法:要想准確描述物體的位置必須選定參照物,有了參照物,就能確定物體位置與順序。

第六單元。認識物體。

1,認識長方體。長方體是長長的,有6個面,有些面是一樣的。有些面是不一樣。平是見到的火柴盒、文具盒都是長方體。

2。認識正方體。正方體四四方方的,它也有六個面,他的邊也是直直的。但是它的邊都是一樣長,每個面都一樣大,無論怎麼平放在桌子上,它的高矮都都是一樣的,魔方就是正方體。

3。認識圓柱。圓柱就像一根柱子。它有上下兩個圓圓的面,而且大小一樣,另一個面是彎曲的,我們把彎曲的面放在桌子上就可以滾動它。

4.認識球。圓圓的,可以滾來滾去的就是球。平時玩的皮球、籃球、踢的足球都是球。