A. 系統資料庫優化問題。如下:
實例講解MYSQL資料庫的查詢優化技術 作者:佚名 文章來源:未知 點擊數:2538 更新時間:2006-1-19 資料庫系統是管理信息系統的核心,基於資料庫的聯機事務處理(OLTP)以及聯機分析處理(OLAP)是銀行、企業、政府等部門最為重要的計算機應用之一。從大多數系統的應用實例來看,查詢操作在各種資料庫操作中所佔據的比重最大,而查詢操作所基於的SELECT語句在SQL語句中又是代價最大的語句。舉例來說,如果數據的量積累到一定的程度,比如一個銀行的賬戶資料庫表信息積累到上百萬甚至上千萬條記錄,全表掃描一次往往需要數十分鍾,甚至數小時。如果採用比全表掃描更好的查詢策略,往往可以使查詢時間降為幾分鍾,由此可見查詢優化技術的重要性。筆者在應用項目的實施中發現,許多程序員在利用一些前端資料庫開發工具(如PowerBuilder、Delphi等)開發資料庫應用程序時,只注重用戶界面的華麗,並不重視查詢語句的效率問題,導致所開發出來的應用系統效率低下,資源浪費嚴重。因此,如何設計高效合理的查詢語句就顯得非常重要。本文以應用實例為基礎,結合資料庫理論,介紹查詢優化技術在現實系統中的運用。分析問題許多程序員認為查詢優化是DBMS(資料庫管理系統)的任務,與程序員所編寫的SQL語句關系不大,這是錯誤的。一個好的查詢計劃往往可以使程序性能提高數十倍。查詢計劃是用戶所提交的SQL語句的集合,查詢規劃是經過優化處理之後所產生的語句集合。DBMS處理查詢計劃的過程是這樣的:在做完查詢語句的詞法、語法檢查之後,將語句提交給DBMS的查詢優化器,優化器做完代數優化和存取路徑的優化之後,由預編譯模塊對語句進行處理並生成查詢規劃,然後在合適的時間提交給系統處理執行,最後將執行結果返回給用戶。在實際的資料庫產品(如Oracle、Sybase等)的高版本中都是採用基於代價的優化方法,這種優化能根據從系統字典表所得到的信息來估計不同的查詢規劃的代價,然後選擇一個較優的規劃。雖然現在的資料庫產品在查詢優化方面已經做得越來越好,但由用戶提交的SQL語句是系統優化的基礎,很難設想一個原本糟糕的查詢計劃經過系統的優化之後會變得高效,因此用戶所寫語句的優劣至關重要。系統所做查詢優化我們暫不討論,下面重點說明改善用戶查詢計劃的解決方案。解決問題下面以關系資料庫系統Informix為例,介紹改善用戶查詢計劃的方法。1.合理使用索引索引是資料庫中重要的數據結構,它的根本目的就是為了提高查詢效率。現在大多數的資料庫產品都採用IBM最先提出的ISAM索引結構。索引的使用要恰到好處,其使用原則如下:●在經常進行連接,但是沒有指定為外鍵的列上建立索引,而不經常連接的欄位則由優化器自動生成索引。●在頻繁進行排序或分組(即進行group by或order by操作)的列上建立索引。●在條件表達式中經常用到的不同值較多的列上建立檢索,在不同值少的列上不要建立索引。比如在雇員表的「性別」列上只有「男」與「女」兩個不同值,因此就無必要建立索引。如果建立索引不但不會提高查詢效率,反而會嚴重降低更新速度。●如果待排序的列有多個,可以在這些列上建立復合索引(compound index)。●使用系統工具。如Informix資料庫有一個tbcheck工具,可以在可疑的索引上進行檢查。在一些資料庫伺服器上,索引可能失效或者因為頻繁操作而使得讀取效率降低,如果一個使用索引的查詢不明不白地慢下來,可以試著用tbcheck工具檢查索引的完整性,必要時進行修復。另外,當資料庫表更新大量數據後,刪除並重建索引可以提高查詢速度。2.避免或簡化排序應當簡化或避免對大型表進行重復的排序。當能夠利用索引自動以適當的次序產生輸出時,優化器就避免了排序的步驟。以下是一些影響因素:●索引中不包括一個或幾個待排序的列;●group by或order by子句中列的次序與索引的次序不一樣;●排序的列來自不同的表。為了避免不必要的排序,就要正確地增建索引,合理地合並資料庫表(盡管有時可能影響表的規范化,但相對於效率的提高是值得的)。如果排序不可避免,那麼應當試圖簡化它,如縮小排序的列的范圍等。3.消除對大型錶行數據的順序存取在嵌套查詢中,對表的順序存取對查詢效率可能產生致命的影響。比如採用順序存取策略,一個嵌套3層的查詢,如果每層都查詢1000行,那麼這個查詢就要查詢10億行數據。避免這種情況的主要方法就是對連接的列進行索引。例如,兩個表:學生表(學號、姓名、年齡……)和選課表(學號、課程號、成績)。如果兩個表要做連接,就要在「學號」這個連接欄位上建立索引。還可以使用並集來避免順序存取。盡管在所有的檢查列上都有索引,但某些形式的where子句強迫優化器使用順序存取。下面的查詢將強迫對orders表執行順序操作:SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008雖然在customer_num和order_num上建有索引,但是在上面的語句中優化器還是使用順序存取路徑掃描整個表。因為這個語句要檢索的是分離的行的集合,所以應該改為如下語句:SELECT * FROM orders WHERE customer_num=104 AND order_num>1001UNIONSELECT * FROM orders WHERE order_num=1008 這樣就能利用索引路徑處理查詢。 4.避免相關子查詢一個列的標簽同時在主查詢和where子句中的查詢中出現,那麼很可能當主查詢中的列值改變之後,子查詢必須重新查詢一次。查詢嵌套層次越多,效率越低,因此應當盡量避免子查詢。如果子查詢不可避免,那麼要在子查詢中過濾掉盡可能多的行。5.避免困難的正規表達式MATCHES和LIKE關鍵字支持通配符匹配,技術上叫正規表達式。但這種匹配特別耗費時間。例如:SELECT * FROM customer WHERE zipcode LIKE 「98_ _ _」 即使在zipcode欄位上建立了索引,在這種情況下也還是採用順序掃描的方式。如果把語句改為SELECT * FROM customer WHERE zipcode >「98000」,在執行查詢時就會利用索引來查詢,顯然會大大提高速度。 另外,還要避免非開始的子串。例如語句:SELECT * FROM customer WHERE zipcode[2,3]>「80」,在where子句中採用了非開始子串,因而這個語句也不會使用索引。 6.使用臨時表加速查詢把表的一個子集進行排序並創建臨時表,有時能加速查詢。它有助於避免多重排序操作,而且在其他方面還能簡化優化器的工作。例如:SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 AND cust.postcode>「98000」 ORDER BY cust.name 如果這個查詢要被執行多次而不止一次,可以把所有未付款的客戶找出來放在一個臨時文件中,並按客戶的名字進行排序: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 ORDER BY cust.name INTO TEMP cust_with_balance 然後以下面的方式在臨時表中查詢:SELECT * FROM cust_with_balance WHERE postcode>「98000」 臨時表中的行要比主表中的行少,而且物理順序就是所要求的順序,減少了磁碟I/O,所以查詢工作量可以得到大幅減少。注意:臨時表創建後不會反映主表的修改。在主表中數據頻繁修改的情況下,注意不要丟失數據。 7.用排序來取代非順序存取非順序磁碟存取是最慢的操作,表現在磁碟存取臂的來回移動。SQL語句隱藏了這一情況,使得我們在寫應用程序時很容易寫出要求存取大量非順序頁的查詢。有些時候,用資料庫的排序能力來替代非順序的存取能改進查詢。實例分析下面我們舉一個製造公司的例子來說明如何進行查詢優化。製造公司資料庫中包括3個表,模式如下所示:1.part表 零件號零件描述其他列 (part_num)(part_desc)(other column) 102,032Seageat 30G disk…… 500,049Novel 10M network card…… …… 2.vendor表 廠商號廠商名其他列 (vendor _num)(vendor_name) (other column) 910,257Seageat Corp…… 523,045IBM Corp…… …… 3.parven表 零件號廠商號零件數量 (part_num)(vendor_num)(part_amount) 102,032910,2573,450,000 234,423321,0014,000,000 …… 下面的查詢將在這些表上定期運行,並產生關於所有零件數量的報表: SELECT part_desc,vendor_name,part_amount FROM part,vendor,parven WHERE part.part_num=parven.part_num AND parven.vendor_num = vendor.vendor_num ORDER BY part.part_num 如果不建立索引,上述查詢代碼的開銷將十分巨大。為此,我們在零件號和廠商號上建立索引。索引的建立避免了在嵌套中反復掃描。關於表與索引的統計信息如下: 錶行尺寸行數量每頁行數量數據頁數量 (table)(row size)(Row count)(Rows/Pages)(Data Pages) part15010,00025400 Vendor1501,000 2540 Parven13 15,000300 50 索引鍵尺寸每頁鍵數量頁面數量 (Indexes)(Key Size)(Keys/Page)(Leaf Pages) part450020 Vendor45002 Parven825060 看起來是個相對簡單的3表連接,但是其查詢開銷是很大的。通過查看系統表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理順序存放的。parven表沒有特定的存放次序。這些表的大小說明從緩沖頁中非順序存取的成功率很小。此語句的優化查詢規劃是:首先從part中順序讀取400頁,然後再對parven表非順序存取1萬次,每次2頁(一個索引頁、一個數據頁),總計2萬個磁碟頁,最後對vendor表非順序存取1.5萬次,合3萬個磁碟頁。可以看出在這個索引好的連接上花費的磁碟存取為5.04萬次。實際上,我們可以通過使用臨時表分3個步驟來提高查詢效率: 1.從parven表中按vendor_num的次序讀數據: SELECT part_num,vendor_num,price FROM parven ORDER BY vendor_num INTO temp pv_by_vn 這個語句順序讀parven(50頁),寫一個臨時表(50頁),並排序。假定排序的開銷為200頁,總共是300頁。 2.把臨時表和vendor表連接,把結果輸出到一個臨時表,並按part_num排序: SELECT pv_by_vn,* vendor.vendor_num FROM pv_by_vn,vendor WHERE pv_by_vn.vendor_num=vendor.vendor_num ORDER BY pv_by_vn.part_num INTO TMP pvvn_by_pn DROP TABLE pv_by_vn 這個查詢讀取pv_by_vn(50頁),它通過索引存取vendor表1.5萬次,但由於按vendor_num次序排列,實際上只是通過索引順序地讀vendor表(40+2=42頁),輸出的表每頁約95行,共160頁。寫並存取這些頁引發5*160=800次的讀寫,索引共讀寫892頁。3.把輸出和part連接得到最後的結果: SELECT pvvn_by_pn.*,part.part_descFROM pvvn_by_pn,part WHERE pvvn_by_pn.part_num=part.part_num DROP TABLE pvvn_by_pn 這樣,查詢順序地讀pvvn_by_pn(160頁),通過索引讀part表1.5萬次,由於建有索引,所以實際上進行1772次磁碟讀寫,優化比例為30∶1。筆者在Informix DynamicSever上做同樣的實驗,發現在時間耗費上的優化比例為5∶1(如果增加數據量,比例可能會更大)。 小結20%的代碼用去了80%的時間,這是程序設計中的一個著名定律,在資料庫應用程序中也同樣如此。我們的優化要抓住關鍵問題,對於資料庫應用程序來說,重點在於SQL的執行效率。查詢優化的重點環節是使得資料庫伺服器少從磁碟中讀數據以及順序讀頁而不是非順序讀頁。
B. 資料庫優化的概念
索引調整:前置條件,數據量龐大,只讀查詢頻繁
語言的優化
C. 資料庫如何優化
body{
line-height:200%;
}
如何優化MySQL資料庫
當MySQL資料庫邂逅優化,它有好幾個意思,今天我們所指的是性能優化。
我們究竟該如何對MySQL資料庫進行優化呢?下面我就從MySQL對硬體的選擇、Mysql的安裝、my.cnf的優化、MySQL如何進行架構設計及數據切分等方面來說明這個問題。
1.伺服器物理硬體的優化
1)磁碟(I/O),MySQL每一秒鍾都在進行大量、復雜的查詢操作,對磁碟的讀寫量可想而知,所以推薦使用RAID1+0磁碟陣列,如果資金允許,可以選擇固態硬碟做RAID1+0;
2)cpu對Mysql的影響也是不容忽視的,建議選擇運算能力強悍的CPU。
2.MySQL應該採用編譯安裝的方式
MySQL資料庫的線上環境安裝,我建議採取編譯安裝,這樣性能會較大的提升。
3.MySQL配置文件的優化
1)skip
-name
-resolve,禁止MySQL對外部連接進行DNS解析,使用這一選項可以消除MySQL進行DNS解析的時間;
2)back_log
=
384,back_log指出在MySQL暫時停止響應新請求之前,短時間內的多少個請求可以被存在堆棧中,對於Linux系統而言,推薦設置小於512的整數。
3)如果key_reads太大,則應該把my.cnf中key_buffer_size變大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4.MySQL上線後根據status狀態進行適當優化
1)打開慢查詢日誌可能會對系統性能有一點點影響,如果你的MySQL是主-從結構,可以考慮打開其中一台從伺服器的慢查詢日誌,這樣既可以監控慢查詢,對系統性能影響也會很小。
2)MySQL伺服器過去的最大連接數是245,沒有達到伺服器連接數的上限256,應該不會出現1040錯誤。比較理想的設置是:Max_used_connections/max_connections
*
100%
=85%
5.MySQL資料庫的可擴展架構方案
1)MySQL
cluster,其特點為可用性非常高,性能非常好,但它的維護非常復雜,存在部分Bug;
2)DRBD磁碟網路鏡像方案,其特點為軟體功能強大,數據可在底層塊設備級別跨物理主機鏡像,且可根據性能和可靠性要求配置不同級別的同步。
D. 資料庫性能優化有哪些措施
1、調整數據結構的設計。這一部分在開發信息系統之前完成,程序員需要考慮是否使用ORACLE資料庫的分區功能,對於經常訪問的資料庫表是否需要建立索引等。
2、調整應用程序結構設計。這一部分也是在開發信息系統之前完成,程序員在這一步需要考慮應用程序使用什麼樣的體系結構,是使用傳統的Client/Server兩層體系結構,還是使用Browser/Web/Database的三層體系結構。不同的應用程序體系結構要求的資料庫資源是不同的。
3、調整資料庫SQL語句。應用程序的執行最終將歸結為資料庫中的SQL語句執行,因此SQL語句的執行效率最終決定了ORACLE資料庫的性能。ORACLE公司推薦使用ORACLE語句優化器(Oracle Optimizer)和行鎖管理器(row-level manager)來調整優化SQL語句。
4、調整伺服器內存分配。內存分配是在信息系統運行過程中優化配置的,資料庫管理員可以根據資料庫運行狀況調整資料庫系統全局區(SGA區)的數據緩沖區、日誌緩沖區和共享池的大小;還可以調整程序全局區(PGA區)的大小。需要注意的是,SGA區不是越大越好,SGA區過大會佔用操作系統使用的內存而引起虛擬內存的頁面交換,這樣反而會降低系統。
5、調整硬碟I/O,這一步是在信息系統開發之前完成的。資料庫管理員可以將組成同一個表空間的數據文件放在不同的硬碟上,做到硬碟之間I/O負載均衡。
6、調整操作系統參數,例如:運行在UNIX操作系統上的ORACLE資料庫,可以調整UNIX數據緩沖池的大小,每個進程所能使用的內存大小等參數。
資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今六十多年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。
在信息化社會,充分有效地管理和利用各類信息資源,是進行科學研究和決策管理的前提條件。資料庫技術是管理信息系統、辦公自動化系統、決策支持系統等各類信息系統的核心部分,是進行科學研究和決策管理的重要技術手段。
在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的「倉庫」,並根據管理的需要進行相應的處理。
例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。
(4)數據優化知識大全擴展閱讀
資料庫,簡單來說是本身可視為電子化的文件櫃--存儲電子文件的處所,用戶可以對文件中的數據進行新增、截取、更新、刪除等操作。
資料庫指的是以一定方式儲存在一起、能為多個用戶共享、具有盡可能小的冗餘度的特點、是與應用程序彼此獨立的數據集合。
在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的"倉庫",並根據管理的需要進行相應的處理。
例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。
E. 如何優化資料庫
設計資料庫要滿足三大範式:第一範式:
1、內容相似的數據列必須消除(消除的辦法就是再創建一個數據表來存放他們,建立關聯關系)
2、必須為每一組相關數據分別創建一個表
3、每條數據記錄必須用一個主鍵來標示
第二範式:
1、只要數據列裡面的內容出現重復,就意味著應該把表拆分為多個表
2、拆分形成的表必須用外鍵關聯起來。
第三範式:
1、與主鍵沒有直接關系的數據列必須消除(消除的辦法就是再創建一個表來存放他們)
F. 資料庫優化是什麼意思
資料庫優化,首先最初硬體方面就可以優化硬碟IO,內存分配,就是安裝時候調整的一系列操作系統級的內核參數,之後就是資料庫架構上的優化了,邏輯、數據結構等等,最後就是代碼上的優化。當然優化是一個長期的工作,沒有最優只有更優。
G. 資料庫優化怎麼做
太復雜了,簡單的說兩句吧,
比如存儲過程優化,選擇一個好的資料庫引擎,然後使用NTFS磁碟格式,
把資料庫臨時文件用單獨的磁碟保存,要創建適當的索引,
有技術的話單獨為資料庫創建一個緩存伺服器,
有錢的話選擇X64的伺服器系統和資料庫引擎,簡直是如虎添翼。。。
H. 如何優化erp資料庫
數據,也許你現在覺得沒有用,匯總了,將來不知道什麼時候就用到
所以不管什麼優化方式都是不科學的
只能是說,根據你最緊迫的需求進行處理
比如你的ERP系統由於數據過多而緩慢,那麼一是想辦法升級硬體、二是想辦法優化資料庫、三是引用更好的演算法
從優化來說,可以加索引、可以改視圖、可以優化存儲過程,還可以去掉一些目前看無用的數據,而這最後一條往往是見效最快的
所以很多ERP軟體採用的是年結的方法,每年建個新資料庫,速度會有顯著提升
但是,分割的時間段和粒度和企業數據量和規模應該緊密相關
而這么做,損失的是歷史數據,或者說犧牲了歷史數據的分析方便性,而提升了現有數據處理能力
那麼,等你們解決了現有矛盾,需要從歷史數據挖掘信息時,就應該引入數據集市技術,獨立於ERP系統進行數據的切片和分析。
所以,為了將來能夠進行有效分析,我建議你採用的優化手段一定是要改善現有ERP系統處理速度,而同時不損害歷史既有數據的方法。這需要你的軟體供應商能夠支持,或者你作為軟體廠商需要考慮。