當前位置:首頁 » 基礎知識 » 數學七下15章知識點
擴展閱讀
希望就在前方歌詞怎麼找 2024-11-01 18:15:07

數學七下15章知識點

發布時間: 2022-08-07 07:13:10

❶ 七年級下冊數學復習提綱(人教版)

第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。

5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。

第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。

第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。

7.2 與三角形有關的角
三角形的內角和等於180度。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角

7.3 多邊形及其內角和
n邊形內角和等於:(n-2)•180度
多邊形(polygon)的外角和等於360度。

第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

第九章 不等式與不等式組
9.1 不等式
用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。

9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。

第十章 實數
10.1 平方根
如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。

10.2 立方根
如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。

10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。

❷ 七年級下的數學的重點考點有哪些

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

❸ 初中數學七下知識點

初中數學知識大全

1、一元一次方程根的情況
△=b2-4ac
當△>0時,一元二次方程有2個不相等的實數根;
當△=0時,一元二次方程有2個相同的實數根;
當△<0時,一元二次方程沒有實數根
2、平行四邊形的性質:
① 兩組對邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③ 平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
菱形:①一組鄰邊相等的平行四邊形是菱形
②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
① 有一個內角是直角的平行四邊形叫做矩形。
② 矩形的對角線相等,四個角都是直角。
③ 對角線相等的平行四邊形是矩形。
④ 正方形具有平行四邊形,矩形,菱形的一切性質。
⑤一組鄰邊相等的矩形是正方形。
多邊形:
①N邊形的內角和等於(N-2)180度
②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)

平均數:對於N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X
加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d﹤r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d﹥r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d﹥R+r
②兩圓外切 d=R+r
③兩圓相交 R-r﹤d﹤R+r(R﹥r)
④兩圓內切 d=R-r(R﹥r)
⑤兩圓內含 d﹤R-r(R﹥r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

三、常用數學公式
公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
初中幾何常見輔助線作法歌訣匯編
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。

❹ 人教版七年級數學下冊知識點!要最新的、速度速度!! 如題!! 急啊!!~!!!

第五章 平等線與相交線
1、同角或等角的餘角相等,同角或等角的補角相等。
2、對頂角相等
3、判斷兩直線平行的條件:
1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 3)同旁內角互補,兩直線平行。 (4)如果兩條直線都和第三條直線平行,那麼這兩面三刀條直線也互相平行。
4、平行線的特徵:
(1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 (3)同旁內角互補,兩直線平行。
5、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如
果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
6、平移
平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移,平移不改變物體的形狀和大小。
(1) 把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
(2) 新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
第六章 平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。
3、在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。平面直角坐標系有兩個坐標軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標系所在平面叫做坐標平面,兩坐標軸的公共原點叫做平面直角坐標系的原點。X軸和Y軸把坐標平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般情況下,x軸和y軸取相同的單位長度。
3、特殊位置的點的坐標的特點:
(1).x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
4.點到軸及原點的距離
點到x軸的距離為|y|; 點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1.關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2.關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
x軸上的點縱坐標為0,y軸橫坐標為0。
第七章 三角形
1、三角形任意兩邊之和大於第三邊,確形任意兩邊之差小於第三邊。
2、三角形三個內角的和等於180度。
3、直角三角形的兩個銳角互余
4、三角形的三條角平分線交於一點,三條中線交於一點;三角形的三條高所在的直線交於一點。
5、直角三角形全等的條件:
斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成「斜邊、直角邊」或「HL」。
(只要有任意兩條邊相等,這兩個直角三角形就全等)。
6、三角形全等的條件:
(1)三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」。
(2)兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為「角邊角」或「ASA」。
(3)兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為「角角邊」或「AAS」。
(4)兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為「邊角邊」或「SAS」。
27、等腰三角形的特徵:
(1) 有兩條邊相等的三角形叫做等腰三角形;
(2) 等腰三角形是軸對稱圖形;
(3) 等腰三角形頂角的平分線、底邊上的中線、底邊上的重合(也稱「三線合一」),它們所在的直線都是等腰三角形的對稱軸。
(4)等腰三角形的兩個底角相等。
(5)等腰三角形的底角只能是銳角。

回答人的補充 2009-06-14 15:06 8、三角形具有穩定性,四邊形不具有穩定性。
9.三角形內角和為180°,三角形的一個外交等於與他不相鄰的兩個內角的和,三角形的一個外角大於與它不相鄰的任何一個內角。
多邊形
1.有一些線段首位順次相接組成的圖形叫做多邊形
2、多邊形相鄰兩邊組成的角叫做它的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
3、連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
4、畫出多邊形的任何一條邊所在的直線,如果整個多邊形都在這條直線的同一側,那麼這個多邊形就是凸多邊形,否則就是凹多邊形。
5.各個角都相等,各條邊都相等的多邊形叫做正多邊形。
6、n邊形的內角和等於(n-2)*180°
多邊形的外角和等於360°
7、如果說四邊形的一對角互補,那麼另一組角也互補。
鑲嵌
1.鑲嵌也叫作密鋪,指的是:用一些不重疊擺放的多邊形把平面的一部分無縫隙的完全覆蓋。 回答人的補充 2009-06-14 15:54 第八章 二元一次方程組
1、二元一次方程組的意義:含有兩個未知數的方程並且所含未知項的最高次數是1,這樣的整式方程叫做二元一次方程。
把兩個一次方程聯立在一起,那麼這兩個方程就組成了一個二元一次方程組。
有幾個方程組成的一組方程叫做方程組。如果方程組中含有兩個未知數,且含未知數的項的次數都是一次,那麼這樣的方程組叫做二元一次方程組。
2、二元一次方程組有兩種解法,一種是代入消元法,一種是加減消元法.
代入消元法:把二元一次方程中的一個方程的一個未知數用含另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解。
加減消元法:兩個二元一次方程中同一未知數的系數相反或相等時,把這兩個方程的兩邊分別相加或向減,就能消去這個未知數,得到一個一元一次方程。
3、三元一次方程組:在3個方程組中,共含有3個未知數,且每個未知數的次數都是1次,像這樣的方程組叫做三元一次方程組. 回答人的補充 2009-06-14 16:12 第九章 不等式與不等式組
1、不等式:用不等號將兩個解析式連結起來所成的式子。
2、不等式的最基本性質有:①如果x>y,那麼y<x;如果y<x,那麼x>y;②如果x>y,y>z;那麼x>z;③如果x>y,而z為任意實數,那麼x+z>y+z;④ 如果x>y,z>0,那麼xz>yz;⑤如果x>y,z<0,那麼xz<yz。
2、不等式的基本性質:
性質1:如果a>b,b>c,那麼a>c(不等式的傳遞性).
性質2:如果a>b,那麼a+c>b+c(不等式的可加性).
性質3:如果a>b,c>0,那麼ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法則)
性質4:如果a>b,c>d,那麼a+c>b+d. (不等式的加法法則)
性質5:如果a>b>0,c>d>0,那麼ac>bd. (可乘性)
性質6:如果a>b>0,n∈N,n>1,那麼an>bn,且.當0<n<1時也成立. (乘方法則)
性質7:如果a>等於b c>b 那麼c大於等於a
性質7不一定成立,如a取值28,b取值3,c取值19,則c不大於a
4、不等式組:幾個含有相同未知數的不等式聯立起來,叫做不等式組.
5、解不等式組,可以先把其中的不等式逐條算出各自的解集,然後分別在數軸上表示出來。
以兩條不等式組成的不等式組為例,
①若兩個未知數的解集在數軸上表示同向左,就取在左邊的未知數的解集為不等式組的解集,此乃「同小取小」
②若兩個未知數的解集在數軸上表示同向右,就取在右邊的未知數的解集為不等式組的解集,此乃「同大取大」
③若兩個未知數的解集在數軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃「相交取中」
④若兩個未知數的解集在數軸上向背,那麼不等式組的解集就是空集,不等式組無解。此乃「向背取空」
第十章 數據的收集、整理與描述
1、全面調查:考察全體對象的調查叫做全面調查,也叫普查。
2、抽樣調查:只抽取一部分對象進行調查,然後根據數據推斷全體對象的情況。要考察的全體對象稱為總體,組成總體的每一個考察對象稱為個體,被抽取的那些個體組成一個樣本,樣本中個體的數目稱為樣本容量。 回答人的補充 2009-06-14 16:23 3、直方圖的繪制方法:①集中和記錄數據,求出其最大值和最小值。數據的數量應在100個以上,在數量不多的情況下,至少也應在50個以上。
②將數據分成若干組,並做好記號。分組的數量在5-12之間較為適宜。
③計算組距的寬度。用組數去除最大值和最小值之差,求出組距的寬度。
④計算各組的界限位。各組的界限位可以從第一組開始依次計算,第一組的下界為最小值減去組距的一半,第一組的上界為其下界值加上組距。第二組的下界限位為第一組的上界限值,第二組的下界限值加上組距,就是第二組的上界限位,依此類推。
⑤統計各組數據出現頻數,作頻數分布表。
⑥作直方圖。以組距為底長,以頻數為高,作各組的矩形圖。
4、從數據談節水:加強環境保護,節約用水。

❺ 七年級下冊數學知識點總結

第五章 平等線與相交線
1、同角或等角的餘角相等,同角或等角的補角相等。
2、對頂角相等
3、判斷兩直線平行的條件:
1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 3)同旁內角互補,兩直線平行。 (4)如果兩條直線都和第三條直線平行,那麼這兩面三刀條直線也互相平行。
4、平行線的特徵:
(1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 (3)同旁內角互補,兩直線平行。
5、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如
果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
6、平移
平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移,平移不改變物體的形狀和大小。
(1) 把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
(2) 新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
第六章 平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。
3、在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。平面直角坐標系有兩個坐標軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標系所在平面叫做坐標平面,兩坐標軸的公共原點叫做平面直角坐標系的原點。X軸和Y軸把坐標平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般情況下,x軸和y軸取相同的單位長度。
3、特殊位置的點的坐標的特點:
(1).x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
4.點到軸及原點的距離
點到x軸的距離為|y|; 點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1.關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2.關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
x軸上的點縱坐標為0,y軸橫坐標為0。
第七章 三角形
1、三角形任意兩邊之和大於第三邊,確形任意兩邊之差小於第三邊。
2、三角形三個內角的和等於180度。
3、直角三角形的兩個銳角互余
4、三角形的三條角平分線交於一點,三條中線交於一點;三角形的三條高所在的直線交於一點。
5、直角三角形全等的條件:
斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成「斜邊、直角邊」或「HL」。
(只要有任意兩條邊相等,這兩個直角三角形就全等)。
6、三角形全等的條件:
(1)三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」。
(2)兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為「角邊角」或「ASA」。
(3)兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為「角角邊」或「AAS」。
(4)兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為「邊角邊」或「SAS」。
27、等腰三角形的特徵:
(1) 有兩條邊相等的三角形叫做等腰三角形;
(2) 等腰三角形是軸對稱圖形;
(3) 等腰三角形頂角的平分線、底邊上的中線、底邊上的重合(也稱「三線合一」),它們所在的直線都是等腰三角形的對稱軸。
(4)等腰三角形的兩個底角相等。
(5)等腰三角形的底角只能是銳角

❻ 請求七年級下冊數學各章知識重點總結

第一章
有理數
1.1
正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative
number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive
number)(根據需要,有時在正數前面也加上「+」)。
1.2
有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational
number)。
通常用一條直線上的點表示數,這條直線叫數軸(number
axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite
number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute
value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3
有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4
有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base
number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant
digit)。
第二章
一元一次方程
2.1
從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear
equation
with
one
unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2
從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章
圖形認識初步
3.1
多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2
直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3
角的度量
1度=60分
1分=60秒
1周角=360度
1平角=180度
3.4
角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary
angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary
angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第四章
數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
基本是這些,其他需要自己運用知識答題!

❼ 人教版初一下冊數學每章知識點總結

初一數學(上)應知應會的知識點
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「· 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「· 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
有理數
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數 0和正整數;a>0 a是正數;a<0 a是負數;
a≥0 a是正數或0 a是非負數;a≤ 0 a是負數或0 a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0 a+b=0 a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
(3) ; ;
(4) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
整式分類為: .
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.
7.合並同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
一元一次方程
1.等式與等量:用「=」號連接而成的式子叫等式.注意:「等量就能代入」!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
10.列一元一次方程解應用題:
(1)讀題分析法:………… 多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: ………… 多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間 ;
(2)工程問題: 工作量=工效·工時 ;
(3)比率問題: 部分=全體·比率 ;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=πR2h

❽ 七年級下冊數學所有知識點

1.三角形 由不在同一條直線上的三條線段首尾順次相接組成的圖形叫三角形。2.三角形的高 從三角形一個頂點向對邊畫垂線,頂點和垂足間的線段叫三角形的高。3.三角形的中線 連接三角形一個頂點和它對邊中點的線段叫做三角形的中線。4.三角形的角平分線 畫三角形的一個角的平分線和對邊相交,頂點和交點之間的線段叫三角形的角平分線。5.三角形的外角 三角形一邊與另一邊的延長線組成的角叫做三角形的外角。6.多邊形 在同一平面內,由一些線段首尾順次相接組成的圖形叫多邊形。7.多邊形的對角線 連接多邊形不相鄰的兩頂點的線段叫多邊形的對角線。8.正多邊形 各個角都相等,各個邊都相等的多邊形叫做正多邊形。

❾ 七年級數學下冊知識點總結

第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

❿ 2012北師大版七年級數學下冊的每一章詳細知識點總結。(要有像大括弧的)

七年級數學復習提綱
章豐富的圖形世界
1,共同生活的幾何形狀:圓柱體,立方體,矩形,球
2常見的幾何形狀分類:球體缸(缸,棱鏡,立方體,矩形),圓錐(錐,金字塔)
3的平面圖形折疊成三維圖形,應注意:的側面和底部的圖形的數目是相等的邊的數目的。
4,側氣缸的擴張計劃是一個矩形,擴大的兩個表面,圓錐面的擴張計劃是一個和兩個小正方形和一個立方體表面的展開視圖的矩形展開地圖大和2。
5,特殊的立體圖形截面模式:
(1)的長方體,正方形橫截面:三角形,四邊形(矩形,正方形,梯形,平行四邊形),五邊形。
(2)的橫截面的圓柱體是:圓形
(3)的橫截面的錐形是:三角形。
(4)球橫截面:
6,我們經常會看到圖形的主要觀點被稱為左視圖,頂視圖見圖,見圖。
7,常見的三維圖形的頂視圖
幾何長方體立方體圓錐圓柱球
主視圖的方,矩形
頂視圖的矩形輪/左視圖中的一個長方形廣場
8點動,線,面進入。

第二章有理數
正面和負面
號外0前面加上一個減號「 - 」號的稱為負。
負面意義,相反,被稱為學到了0以外的數字(根據需要,有時還添加了正面的積極的「+」)。
2,有理數
(1)的正整數,0,負整數統稱,正面得分和負分數統稱。
整數和分數統稱。 0是既不的數目,也不數目。
(2)通常是在一條直線上的點的數目,這條線被稱為數字線。
數軸三要素:原點,單位長度。
上台後採取一個點代表數字0在一條直線上,這一點被調用。
(3)數的兩個不同的標志叫對方的相反數。
例如:2的相反數,-2的相反數的相反數
(4)代表被叫號碼A的軸數,表示一個點的距離的起源的數字的絕對值| A |。
一個正數的絕對值本身是一個負的絕對值是其相對的數目; 0 0是絕對值。 2負,絕對的值來代替。
3,有理數的加法和減法
(1)合理的加法法則:
1。加入兩個數的相同的符號,以相同的,和的絕對值的總和。絕對值不等於符號相反
②兩個數字相加,查馬克,並減去較小的絕對值。的
彼此相反的兩個數的總和為0。同樣的總和,
③一個數字,這個數字仍然有。
(2)合理的減法法則:減去一個數的相反數加數字。
4,有理數的乘法和除法
(1)理性的乘法法則:兩數相乘,相同的號碼是積極的,消極的符號相反,其絕對值乘以。任何數乘以0,0。
(2)兩個對等的產品。例如: - 倒計時;絕對值,相反數。
(3)有理數分割第1條規則:除以由等於0的數,是相等的數量的倒數的相乘。
有理數分規則:兩數相除有相同的符號,符號相反的是,和分裂。 0除以任何等於0的數,得到0。
(4)求n個相同的因素計算產品,被稱為退化,退化的結果被稱為電源(POWER)。的N次方,稱為基(鹼基數),n被稱為索引(指數)。
負奇功率為負,負功率。正任何權力是正數,0的任何權力。奇次方-1 -1甚至次方。

第三章,字母表示數
連接的數量和說,從信中的字母稱為代數運算符號。
2,尋求代數值:值嗎?的英文字母必須確保的代數意義的字母,以確保它代表了一些有意義的值。
3,代數系數應包括在前面的這個符號代數的一個只包含字母因素,其系數為1或-1,而不是0。
4,包含在相同的項目,相同的字母。註:
同類項的系數無關,無關的字母順序;幾個常量和類似的項目。
5,合並同類項法則:合並同類項,同類項的系數被添加不變。
6中,轉到的括弧法律:
(1)括弧前的「+」號中的括弧去掉,和前面的「+」符號在原來的括弧
(2)章平面圖形的位置關系的括弧前的城市「 - 」中的括弧去掉,並在它的面前 - 「原括弧

1,直線,射線段 />(1)直線,射線,段區分:行尾是:射線端點:段端點。
(2)段的公理:兩點之間,線段(兩點之間的所有連接,線段最短)。
連接兩個點之間的段的長度,稱為。
(3)段比較法:堆棧和的方法和措施方法。
(4)段的中點:如果M是AB的中點;相反,如果的
線段AB中的點M,和(AB = BM),點M是AB的中點。
例:C是中點的線段AB,AC ==,或2AC == AB,
AC = AB,BC = AB。

(1)1 = 1 = ; 1輪角= 1度的拳擊手=度=完整的革命
(2)角3角測量和表示方法:用三個大寫字母表示,或用大寫字母(如:ABC <A(<β ),用希臘字母表示的數字(例如,<1 <2
3,角度比較計算
(1)角的大小,可分為銳角,直角,鈍角,直角度來看,一個完整的革命。
(2)的角度分成兩個相等的角的角平分線,角平分線是射線。
射線OC <AOB的角平分線,我們知道,AOC == /> <AOB = 2 BOC = <AOC + = <AOB,BOC = AOB-
4,平行線
(1)如何繪制平行線?
性質(2)平行線1:過已知直線外一點的線是平行的;
平行的性質之二:垂直的兩行與三線平行,兩條直線
5 <BR / (1)如何畫一條垂直線?
(2)垂直線1:超過110線與已知直線的性質。
垂直性質:直線外一點在任何時候上線的連接,是最短的。
垂直的性質:點到直線的距離。
有趣的謎題:
拼圖從5等腰直角三角形的一個組成
所述第五元件,一旦方程
1,從方程等式
方程方程含有未知的。
方程只含有未知的未知X×指數此方程$稱為一個線性方程性質:

得到方程等號相等的值的左側和右側的未知數,此值是方程的解。
2,方程(1)方程兩側加(或減)相同的數量(或公式),結果仍是相同的。
(2)由相同數量的方程的兩側上,或者除以相同的數為0,結果還是一樣的。
3,後的方程一側移動到另一邊,叫換位可變數量的(要移動,你??必須改變)
4年歷卡,垂直列上相鄰的兩個數字不同,數字7;相鄰的猖獗的兩個數字之間的差,大的(1)的數目的個數比例的個數比例。
常用體積公式:
/>長方形的體積=長X寬X,成交量為一個正方形邊長的邊長邊長為XX;
棱鏡體積= x高量的汽缸=底面積×圓錐體積= X高。
6,平等的關系:
(1)利潤=價格 - 利潤率=利潤÷成本(購買價格)
(2)利息=本金x利率X-;本金及利息=本金+利息=本金×(1 +利率×期數)
利息稅=利息×稅率=本金x利率XX;的
貸款的利息=貸款額XX
7,行程問題的主要類型和平等的關系:發現問題
(1):A和B在同一個方向在不同的地方,然後恢復前的步行路程走+兩地之間的距離。
(2)問:A和B相反:離開A + =總距離
8應用題的關鍵生活

章 /> 1,表示作為一個數量大於10的形式(1≤<n是一個正整數)被調用。
(從數字到左側的第一非零數從結束所有的號碼的最後一位數字是數的顯著位數。)
2,扇形圖的性質:每個部門中的每一個部分,每一個部門和整圓的百分比。 /> 3,(1)的扇形的中心角度= X的一部分,總;
整個每一部分(2)的百分比=部分數÷=圓心角的度數和部分相對應的比。
4,扇形圖的步驟?
5圖表功能:
(1)扇形圖清楚地表明
(2)折線圖可以清楚地反映
(3)條形圖顯示清楚

的可能性
不可避免的事件「第七章:的提前可以肯定
確定事件不可能的事件:在此之前確保
事件不確定性事件:
1不能請務必提前的事情發生了:
機會可能會或可能不會發生大的不確定性事件的可能性的大小,並不一定是一個小的機會,不確定性事件的發生,只有機會的大小不同程度的發生。
2,學會判斷事情發生的可能性大小。