A. 初中物理知識點
初中物理合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
簡介:初中物理優質資料下載,適合各階段老師教學,學生日常輔導,中考沖刺,技能提升的學習。
B. 物理知識點有哪些
物理知識點如下:
1、光的折射定律:光從一介質進入另一介質時,傳播路線要發生改變,入射光線和折射光線分居法線的兩側;從光密質進入光疏質時,入射角小於折射角。
2、密度的定義:首先密度的定義就是單位體積某種物質的質量是多少, 這就是物質的密度,物質的密度能夠反映出來物質的物理量,也是物質的一種特性。
3、繼電器:繼電器就是一個具有隔離功能的自動開關元件,滿足條件之後就會改變原來的「通」「斷」狀態。
4、質地均勻、形狀規則的物體,重心在其幾何中心,大多數物體的重心在物體上,少數物體的重心不在物體上(如環形物體)。
5、在任何情況下,物體所受重力的方向總是豎直向下。
C. 初中物理知識點總結,權威的,包括初中物理各章知識點的總結!
初中物理合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
簡介:初中物理優質資料下載,適合各階段老師教學,學生日常輔導,中考沖刺,技能提升的學習。
D. 求關於物理學史的知識點
高中物理公式總結
物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑®:米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F´{負號表示方向相反,F、F´各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:
(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N•m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。
十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
E. 有哪位幫忙去整理一下高中物理的物理學史考點啊!!
一、力學:
1.1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體不會比輕物體下落得快;他研究自由落體運動程序如下:
提出假說:自由落體運動是一種對時間均勻變化的最簡單的變速運動;
數學推理:由初速度為零、末速度為v的勻變速運動平均速度 和 得出 ;再應用 從上式中消去v,導出 即 。
實驗驗證:由於自由落體下落的時間太短,直接驗證有困難,伽利略用銅球在阻力很小的斜面上滾下,上百次實驗表明: ;換用不同質量的小球沿同一斜面運動,位移與時間平方的比值不變,說明不同質量的小球沿同一斜面做勻變速直線運動的情況相同;不斷增大斜面傾角,重復上述實驗,得出該比值隨斜面傾角的增大而增大,說明小球做勻變速運動的加速度隨斜面傾角的增大而變大。
合理外推:把結論外推到斜面傾角為90°的情況,小球的運動成為自由落體,伽利略認為這時小球仍保持勻變速運動的性質。(用外推法得出的結論不一定都正確,還需經過實驗驗證)
註:伽利略對自由落體的研究,開創了研究自然規律的一種科學方法。(回憶理想斜面實驗)
2.1683年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律。
3.17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
4.20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。
5.17世紀,德國天文學家開普勒提出開普勒三定律;牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較准確地測出了引力常量(體現放大和轉換的思想);1846年,科學家應用萬有引力定律,計算並觀測到海王星。
6.我國宋朝發明的火箭與現代火箭原理相同,但現代火箭結構復雜,其所能達到的最大速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家。
7.17世紀荷蘭物理學家惠更斯確定了單擺的周期公式。周期是2s的單擺叫秒擺。
8.奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。(相互接近,f增大;相互遠離,f減少)
二、熱學:
1.1827年英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。
2.19世紀中葉,由德國醫生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最後確定能量守恆定律。
3.1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述。
4.1848年 開爾文提出熱力學溫標,指出絕對零度(-273.15℃)是溫度的下限。T=t+273.15K
熱力學第三定律:熱力學零度不可達到。
三、電磁學:
1.1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律。(轉化)
2.1752年,富蘭克林在費城通過風箏實驗驗證閃電是電的一種形式,把天電與地電統一起來,並發明避雷針。
3.1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律。
4.1911年荷蘭科學家昂尼斯發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象。
5.1841~1842年 焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,稱為焦耳——楞次定律。
6.1820年,丹麥物理學家奧斯特發現電流可以使周圍的磁針偏轉的效應,稱為電流的磁效應。
安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥;同時提出了安培分子電流假說。
荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。
7.湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。
1932年美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。(最大動能僅取決於磁場和D形盒直徑。帶電粒子圓周運動周期與高頻電源的周期相同;但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的迴旋周期發生變化,進一步提高粒子的速率很困難。
8.1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應現象;
1834年楞次發表確定感應電流方向的定律。
9.1832年亨利發現自感現象,即在研究感應電流的同時,發現因電流變化而在電路本身引起感應電動勢的現象。日光燈的工作原理即為其應用之一。雙繞線法制精密電阻為消除其影響應用之一。
10.1864年英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場的基本方程組,後稱為麥克斯韋方程組,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。電磁波是一種橫波(注意第二冊P243的圖)。
1887年德國物理學家赫茲用實驗證實了電磁波的存在並測定了電磁波的傳播速度等於光速。
四、光學:
1.公元前468-前376,我國的墨翟及其弟子在《墨經》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現象,為世界上最早的光學著作。
2.1849年法國物理學家斐索首先在地面上測出了光速,以後又有許多科學家採用了更精密的方法測定光速,如美國物理學家邁克爾遜的旋轉棱鏡法。(注意其測量方法)
3.1621年荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。
4.關於光的本質:17世紀明確地形成了兩種學說:一種是牛頓主張的微粒說,認為光是光源發出的一種物質微粒;另一種是荷蘭物理學家惠更斯提出的波動說,認為光是在空間傳播的某種波。這兩種學說都不能解釋當時觀察到的全部光現象。
1801年,英國物理學家托馬斯•楊成功地觀察到了光的干涉現象
1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射——泊松亮斑。
1864年英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波,1887年由赫茲證實。
1895年,德國物理學家倫琴發現X射線(倫琴射線),並為他夫人的手拍下世界上第一張X射線的人體照片。
1900年,德國物理學家普朗克為解釋物體熱輻射規律提出電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律。(量子力學的說明在第三冊P56)
1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性。(說明動量守恆定律和能量守恆定律同時適用於微觀粒子)
光具有波粒二象性,光是電磁波、概率波、橫波(光的偏振說明光是一種橫波)。
光的電磁說中要注意電磁波譜(第三冊P31),還要注意原子光譜(涉及光譜分析第三冊P50)
5.1913年,丹麥物理學家玻爾提出了自己的原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。(明確其局限性)
6.1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;1927年美英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高。(第三冊P54)
五、原子物理學:
1.1897年,湯姆生利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型。
2.1909年-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型。由實驗結果估計原子核直徑數量級為10 -15 m 。
3.1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核也有復雜的內部結構。
天然放射現象有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變後新核處於激發態,向低能級躍遷時輻射出的。衰變的快慢(半衰期)與原子所處的物理和化學狀態無關。
4.1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,並發現了質子。
預言原子核內還有另一種粒子,被其學生查德威克於1932年在α粒子轟擊鈹核時發現,由此人們認識到原子核由質子和中子組成。
5.1939年12月德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變。1942年 在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成)。
6.1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是利用強激光產生的高壓照射小顆粒核燃料。
7.現代粒子物理:
1932年發現了正電子,1964年提出誇克模型;
粒子分為三大類:媒介子,傳遞各種相互作用的粒子如光子;
輕子,不參與強相互作用的粒子如電子、中微子;
強子,參與強相互作用的粒子如質子、中子;強子由更基本的粒子誇克組成,誇克帶電量可能為元電荷.
F. 高中近代物理知識點
近代物理知識總結
一、黑體輻射(了解)與能量子
1.一切物體都在輻射電磁波,這種輻射與物體的溫度有關,叫熱輻射。
2.黑體:某種物體能夠完全吸收入射的各種波長的電磁波而不發生反射,這種物體叫黑體。
3.黑體輻射的實驗規律
①一般材料的物體,輻射的電磁波除與溫度有關外,還與材料的種類及表面狀況有關.
②黑體輻射電磁波的強度按波長的分布只與黑體的溫度有關.
a.隨著溫度的升高,各種波長的輻射強度都增加.
b.隨著溫度的升高,輻射強度的極大值向波長較短的方向移動.
4.★★★ 普朗克能量子:帶電微粒輻射或者吸收能量時,只能輻射或吸收某個最小能量值的整數倍.即能量的輻射或者吸收只能是一份一份的.這個不可再分的最小能量值ε叫做能量子.能量子的大小:ε=hν,其中ν是電磁波的頻率,h稱為普朗克常量.
愛因斯坦光子說:空間傳播的光本身就是一份一份的,每一份能量子
叫做一個光子.光子的能量為ε=hν。
二、光電效應規律
(1)每種金屬都有一個極限頻率.
(2) 光電流的強度與入射光的強度成正比.
(3)光照射到金屬表面時,光電子的發射幾乎是瞬時的.
(4) 光子的最大初動能與入射光的強度無關,隨入射光的頻率增大而增大.
理解:(1)光照強度(單色光) 光子數 光電子數 飽和光電流
(2)光子頻率ν 光子能量 ε=hν
愛因斯坦光電效應方程(密立根驗證) Ek=hν-W0
遏制電壓 Uce=Ek
三、光的波粒二象性與物質波
1.光的干涉、衍射、偏振現象證明光具有波動性.光電效應(光子有能量)康普頓效應(光子有動量和能量)說明光具有粒子性.
光的本性:光既具有波動性,又具有粒子性,稱為光的波粒二象性.
2.光波是概率波.大量的、頻率低的粒子波動性明顯(注意有粒子性,只是不明顯)
3. 德布羅意物質波(電子衍射證實):任何一個運動著的物體,小到微觀粒子大到宏觀物體都有一種波與它對應,其波長λ=,p為運動物體的動量,h為普朗克常量. ()
原子結構
1.英國物理學家湯姆孫根據陰極射線在電場和磁場中的偏轉情況,判定其為電子,並求出了電子的比荷。密立根通過油滴實驗測出了電子電荷,並發現電荷是量子化的。
2.盧瑟福α粒子散射實驗:說明原子具有核式結構。
絕大多數α粒子穿過金箔後,基本上仍沿原來的方向前進,但少數α粒子發生了大角度偏轉,極少數α粒子的偏轉超過了90°,有的甚至被撞了回來。.
3.盧瑟福提出原子核式結構模型
二、玻爾原子結構假說(是科學假說、類似還有安培分子電流假說)
1.定態(能量量子化)2.軌道量子化3.躍遷條件:
4.氫原子的能級公式:En=E1(n=1,2,3,…),其中E1為基態能量
5. 對原子躍遷和電離理解:
躍遷:原子從低能級(高能級)E初向高能級(低能級)E末躍遷,只吸收(輻射)hν=E末-E初的能級差能量光子.可以吸收EkE末-E初的能級差能量的電子。
基態電離:基態的氫原子吸收大於等於13.6eV能量的光子或電子後使氫原子電離。
6.一個處於量子數為n的激發態的氫原子,最多可以輻射n-1中不同頻率的光子,一群處於量子數為n的激發態的氫原子,最多可以輻射種不同頻率的光子。
7.氫原子的能量(類比天體模型):E總=EK+EP,當軌道半徑減小時,庫侖引力做正功,原子的電勢能減小,電子動能增大,原子總能量減小.反之,軌道半徑增大時,原子電勢能增大,電子動能減小,原子總能量增大.
8.波爾模型的局限:成功之處為將量子觀點引入原子領域,提出定態和躍遷。不足之處為保留了經典粒子的觀念,仍把電子的運動看做經典力學描述下的軌道運動。
原子核部分
1.法國物理學家貝克勒爾發現天然放射現象,說明原子核還具有復雜的結構.
居里夫婦發現放射性元素釙(Po)和鐳(Ra)。
2.原子核由中子和質子組成,質子和中子統稱為核子.
X元素原子核的符號為X,其中A表示質量數,Z表示核電荷數.
種類
組成
電荷量
質量
貫穿本領
電離
α射線
2e
4mp
最弱
很強
β射線
-e
較強
較弱
γ射線
光子(電磁波)
0
靜止質量為零
最強
很弱
3.原子核放出α粒子或β粒子,變成另一種原子核的變化稱為原子核的衰變.
α衰變: X→Y+He α衰變的實質:2H+2n→He
β衰變: X→Y+e β衰變的實質:1
n → 0
e+1
H
γ射線是α或β衰變後產生的新核能級躍遷輻射出來。
4.半衰期:放射性元素的原子核有半數發生衰變所需的時間.
①半衰期概念適用於大量核衰變(少數個別的核衰變時,談半衰期無意義)
②半衰期由核的性質來決定,與該元素的物理性質(狀態、壓強、溫度、密度等)
化學性質或存在形式均無關
③N=N0(1/2)t/τ ,m=m0(1/2)t/τ , I=I0(1/2)t/τ
I——單位時間內衰變的次數 ,τ——半衰期
N0、m0、I0為最初量,N、m、I為t時間後剩下未衰變數
衰變次數的方法:先由質量數的改變確定α衰變的次數,然後再確定β衰變的次數
5.核力:組成原子核的核子之間有很強的相互作用力,使核子能克服庫侖力而緊密地結合在一起,這種力稱為核力.其特點為:
(1)核力是強相互作用的一種表現,在原子核的尺度內,核力比庫侖力大得多.
(2)核力是短程力,作用范圍在1.5×10-15 m之內.
(3)每個核子只跟相鄰的核子發生核力作用,這種性質稱為核力的飽和性.
6.原子核是核子結合在一起構成的,要把它們分開,需要能量,叫原子核的結合能.結合能與核子數之比稱比結合能,比結合能越大,原子核中核子結合越牢固,原子核越穩定
7.質量虧損:原子核的質量小於組成它的核子的質量之和,這個現象叫做質量虧損.
8.中等大小的核的比結合能最大(平均每個核子的質量虧損最大),這些核最穩當。
9.愛因斯坦質能方程為E=mc2,若核反應中的質量虧損為Δm,釋放的核能ΔE=Δm c2.
10.重核裂變和輕核聚變過程中都有質量虧損,釋放出核能。
11.慢化劑:石墨、重水、輕水(普通水)。鎘棒(控制棒)控制鏈式反應的速度。
12.氫彈、太陽內部發生的是熱核反應(聚變)。原子彈、核電站等(重核裂變)
13放射性同位素及其應用和防護
(1)工業部門使用射線測厚度——利用γ射線的穿透特性;
(2)煙霧報警器的使用——利用射線的電離作用,增加煙霧導電離子濃度;
(3)農業應用—— γ射線使種子的遺傳基因發生變異,殺死腐敗細菌、抑制發芽等;
(4)做示蹤原子——利用放射性同位素與非放射性同位素有相同的化學性質.
G. 高考物理知識點 公式 總結~!
高中文理綜合合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取碼:1234
簡介:高中文理綜合優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。