① 初中數學知識有哪些簡單概括
知識點1:一元二次方程的基本概念
知識點2:直角坐標系與點的位置
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數.
2.函數y=4x+1是正比例函數.
4.拋物線y=-3(x-2)2-5的開口向下.
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2).
7.反比例函數的圖象在第一、三象限.
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3
知識點6:特殊三角函數值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角.
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓.
4.在同圓或等圓中,相等的圓心角所對的弧相等.
5.同弧所對的圓周角等於圓心角的一半.
6.同圓或等圓的半徑相等.
7.過三個點一定可以作一個圓.
8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等.
10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切.
2.三角形的外接圓的圓心叫做三角形的外心.
3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心.
5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線.
7.垂直於半徑的直線是圓的切線.
8.圓的切線垂直於過切點的半徑.
② 數學初三知識點歸納有哪些
數學初三知識點如下:
1、含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。2、同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
3、使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
4、若已知函數圖像與x軸的兩個交點坐標,可設為交點式。
5、一元二次方程解法的選擇順序是:先特殊後一般,如沒有要求,一般不用配方法。
③ 初中數學有哪些知識點
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4
相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
考點5
三角形的重心
考核要求:知道重心的定義並初步應用。
考點6
向量的有關概念
考點7
向量的加法、減法、實數與向量相乘、向量的線性運算
考核要求:掌握實數與向量相乘、向量的線性運算
考點8
銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點9
解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
考點10
函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點11
用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點12
畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點13
二次函數的圖像及其基本性質
考核要求:
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
考點14
圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點15
圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17
直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點18
正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20
確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21
事件發生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
注意:
(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22
等可能試驗中事件的概率問題及概率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23
數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
考點24
統計的含義
考核要求:
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點25
平均數、加權平均數的概念和計算
考核要求:
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點26
中位數、眾數、方差、標准差的概念和計算
考核要求:
(1)知道中位數、眾數、方差、標准差的概念;
(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。
注意:
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點27
頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
考核要求:
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1。
考點28
中位數、眾數、方差、標准差、頻數、頻率的應用
考核要求:
(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;
(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。
④ 初二數學都有哪些知識點
《新初二曹.笑數學秋季培優班(人教版高清視頻)》網路網盤資源下載
鏈接:
若資源有問題歡迎追問~
⑤ 關於冬奧會的數學知識有哪些
從2月4日本屆冬奧會開幕以來,冰墩墩、谷愛凌等冬奧會頂流相繼刷爆整個互聯網,一夜間全民皆知。而在冬奧會中有許多有趣的冬奧數學知識點,你get到了嗎?
01、冬奧會城市與氣溫:正負數
本屆冬奧會由北京主辦,張家口承辦。為什麼選張家口而不是溫度更低的東北?除了距離原因,和溫度也有很大關系。
歷屆冬奧會通常在2月份舉辦,氣溫-17℃~10℃是最理想的溫度。
02、冬奧會中的圖形:軸對稱與中心對稱
冬奧會的獎牌是圓形的,冬奧五環是由5個圓形組成的軸對稱圖形,雪花引導牌是中心對稱圖形。
03、跳台滑雪軌跡:拋物線
青蛙公主谷愛凌的奪冠第三跳為例,選手的助滑速度可達到24米/秒,在運動員滑行的時候,我們將會看到一條優美的拋物線,其運動軌跡可抽象為二次函數圖像,問運動員離地最大高度?
04、各國國旗:比例
冬奧會場上的國旗形狀基本都是長方形的,看起來差不多,但實際上,它們的長寬比例並不完全一致。比如,中國國旗比例為2:3,美國國旗為10:19,瑞典國旗為5:8。
印尼、摩納哥和波蘭都是紅白條紋旗,但是它們的長寬比例也是不一樣的。印尼是3:2,摩納哥是5:4,波蘭是8:5。
05、谷愛凌的1620°:角度
2月8日,北京首鋼園,北京冬奧會自由式滑雪女子大跳台決賽,谷愛凌完成高難度1620°的第三跳後,以總分188.25分獲得冬奧會歷史上首枚自由式滑雪女子大跳台金牌。
從1080、1440到1620度,難度超級加倍,而1620°的周轉體是身體繞自己上下體軸轉四圈半。四圈半在騰空狀態完成,難度相當的大。
06、冬奧場地的各個數字:數的認識
國家速滑館又稱「冰絲帶」,是本屆賽事唯一新建冰上競賽場館。國家速滑館佔地17公頃,擁有一條400米長的賽道,冰面達到世界最高標准。場館可容納約12000名觀眾。
⑥ 初中數學必背知識點
總結的有點多,請耐心看哈!
希望能幫助你,還請及時採納謝謝!
數學,是一門關於如何思維的科學。熟記數學口訣,是解題的一條捷徑,孩子做題思維就會變快。從而更加深刻的記住知識點,減輕孩子的學習負擔,輕松學習。
下面小優老師將初中數學必須掌握的26個知識點口訣總結如下,希望對你有幫助。
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關角,勿忘相互有關聯,
圓周、圓心、弦切角,細找關系把線連
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內接四邊形,對角互補記心間,
外角等於內對角,四邊形定內接圓;
直角相對或共弦,試試加個輔助圓;
若是證題打轉轉,四點共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點,證垂直來半徑連,
直線與圓未給點,需證半徑作垂線;
四邊形有內切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關鍵,
兩圓相切作公切,兩圓相交連公弦。
⑦ 初三數學二次函數求大神解答: 2014年春晚上,一位叫小彩旗的姑娘在原地自轉了四個多小時,細心的小
1,根據題意得y=x(170-x)2,根據函數關系式得,當X=85時,Y最大,最大值為7225。 3,(1)角A是直角時,AP垂直於AB,將sin60度帶入函數關系式,得x=sin60或0,當x=0時為A點,將0捨去,代入sin60,P坐標為(根號三,170倍根號三減去3)(2)B是直角時,B點坐標為(170-40倍sin60°,-40)直線BP與AB垂直,方程為y=-x倍sin60°+170倍sin60°-160,得(x-sin60°)(x-170)=160,方程過於復雜,我這會累了,懶得解了,反正就又會有兩個P點.(3)當P為直角時,無解,P點不存在,別算了,不寫過程了。
⑧ 2020年春晚中有哪些東西運用到了數學
2020年春晚中有哪些東西運用到了數字,所有的節目都是應該應用到數字的。
⑨ 2015春晚有幾個節目是關於數學的
沒一個。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
⑩ 2020春晚節目中蘊含了什麼數學問題
我覺得2020年的春節節目中蘊含了數學問題有很多,就比如說一些基礎的計算或者是一些腦筋急轉彎之類的東西。