1. 高一上期數學主要內容是什麼高一上學期數學主要講
摘要 高一上冊數學知識點總結概念含有一個未知數且未知數的最高次數為2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c=0時,二次三項式,ax^2+bx+c有兩個實根,那麼ax^2+bx+c總可分解為a(x-x1)(x-x2)的形式。這樣,解一元二次不等式就可歸結為解兩個一元一次不等式組。一元二次不等式的解集就是這兩個一元一次不等式組的解集的並集。還是舉個例子吧。2x^2-7x+6<0 利用十字相乘法2 -3 1 -2 得(2x-3)(x-2)<0 然後,分兩種情況討論:一、2x-30 得x2。不成立二、2x-3>0,x-21.5且x<2。得最後不等式的解集為:1.5<x<2。另外,你也可以用配方法解二次不等式:2x^2-7x+6 =2(x^2-3.5x)+6 =2(x^2-3.5x+3.0625-3.0625)+6 =2(x^2-3.5x+3.0625)-6.125+6 =2(x-1.75)^2-0.125<0 2(x-1.75)^2<0.125 (x-1.75)^2<0.0625 兩邊開平方,得x-1.75-0.25 x1.5 得不等式的解集為1.5<x<2 我們知道,實數與數軸上的點是一一對應的.在數軸上不同的兩點中,右邊的點表示的實數比左邊的點表示的實數大.例如,在圖6-1中,點A表示實數a,點B表示實數b,點A在點B右邊,那麼a>b.
2. 高一數學知識點有哪些
1、集合(包括:集合與幾何的表示方法;集合之間的關系與運算)
2、函數(函數的表示方法;單調性與奇偶性;一次函數和二次函數;函數的應用與方程)
3、基本初等函數(指數與指數函數;對數與對數函數;冪函數及函數的應用)
4、數列:這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等。
(2)高一數學上冊知識點必考擴展閱讀:
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
3. 高一上數學重點應掌握哪些知識
從高考角度講:
1. 集合的運算:子、交、並、補、全 。 高考考一道題。5分。
2.函數的概念.
3.函數的基本性質----定義域、值域、單調性、奇偶性、周期性的應用。
4.指數函數的性質。
5.對數函數的性質。
6.已知解析式判斷相應的圖像。
7.函數應用題:先構造函數解析式,再求其最值。(注意定義域).
就這些,呵呵
4. 高一上冊數學重點知識,盡量簡單化,不要搞太復雜,不然看不懂
函數:函數的定義域,值域,解析式,奇偶性,單調性,周期性
5. 高一上冊數學所要學習嘚內容!~(全部)
先說明一下,高中的科目全部不分上下冊,全部變為必修
必修一
第一章 集合與函數概念
1.1 集合
1.2 函數及其表示
1.3 函數的基本性質
實習作業
小結
復習參考題
第二章 基本初等函數(Ⅰ)
2.1 指數函數
2.2 對數函數
2.3 冪函數
小結
復習參考題
第三章 函數的應用
3.1 函數與方程
3.2 函數模型及其應用
實習作業
小結
復習參考題
必修二
第一章 空間幾何體
1.1 空間幾何體的結構
1.2 空間幾何體的三視圖和直觀圖
1.3 空間幾何體的表面積與體積
實習作業
小結
復習參考題
第二章 點、直線、平面之間的位置關系
2.1 空間點、直線、平面之間的位置關系
2.2 直線、平面平行的判定及其性質
2.3 直線、平面垂直的判定及其性質
小結
復習參考題
第三章 直線與方程
3.1 直線的傾斜角與斜率
3.2 直線的方程
3.3 直線的交點坐標與距離公式
小結
復習參考題
必修三
第一章 演算法初步
1.1 演算法與程序框圖
1.2 基本演算法語句
1.3 演算法案例
閱讀與思考 割圓術
小結
復習參考題
第二章 統計
2.1 隨機抽樣
閱讀與思考 一個著名的案例
閱讀與思考 廣告中數據的可靠性
閱讀與思考 如何得到敏感性問題的誠實反應
2.2 用樣本估計總體
閱讀與思考 生產過程中的質量控制圖
2.3 變數間的相關關系
閱讀與思考 相關關系的強與弱
實習作業
小結
復習參考題
第三章 概率
3.1 隨機事件的概率
閱讀與思考 天氣變化的認識過程
3.2 古典概型
3.3 幾何概型
閱讀與思考 概率與密碼
小結
復習參考題
必修四
第一章 三角函數
1.1 任意角和弧度制
1.2 任意角的三角函數
1.3 三角函數的誘導公式
1.4 三角函數的圖象與性質
1.5 函數y=Asin(ωx+ψ)
1.6 三角函數模型的簡單應用
小結
復習參考題
第二章 平面向量
2.1 平面向量的實際背景及基本概念
2.2 平面向量的線性運算
2.3 平面向量的基本定理及坐標表示
2.4 平面向量的數量積
2.5 平面向量應用舉例
小結
復習參考題
第三章 三角恆等變換
3.1 兩角和與差的正弦、餘弦和正切公式
3.2 簡單的三角恆等變換
小結
復習參考題
必修五
第一章 解三角形
1.1 正弦定理和餘弦定理
探究與發現 解三角形的進一步討論
1.2 應用舉例
閱讀與思考 海倫和秦九韶
1.3 實習作業
小結
復習參考題
第二章 數列
2.1 數列的概念與簡單表示法
閱讀與思考 斐波那契數列
閱讀與思考 估計根號下2的值
2.2 等差數列
2.3 等差數列的前n項和
2.4 等比數列
2.5 等比數列前n項和
閱讀與思考 九連環
探究與發現 購房中的數學
小結
復習參考題
第三章 不等式
3.1 不等關系與不等式
3.2 一元二次不等式及其解法
3.3 二元一次不等式(組)與簡單的線性規劃問題
閱讀與思考 錯在哪兒
信息技術應用 用Excel解線性規劃問題舉例
3.4 基本不等式
小結
復習參考題
必修三實用性和適用性在高一作用不大,所以高一上學期學必修一二,下學期學必修四五,跳過必修三
6. 求高一上冊數學知識點全歸納
高一上學期的數學內容並不多,但是難度不低。難度並不在於知識點的深度和綜合能力,而在於從初中相對具體形象的數學學習一下進入高中抽象的,與生活似乎關系不大的學習,很多同學表現出非常大不適應。因此,如果覺得高一數學「難」,復習的重點,應當放在分析為什麼自己覺得學習過的知識點「難」上。難點一:抽象函數F規則的含義雖然看起來簡單,但如果理解不深刻,對於後面的解題有很大的影響。解決抽象函數難點的思路主要有這樣兩條:(1) 將抽象函數的內容與具體函數的性質結合起來。抽象函數作為理解函數的一個上位的要求,對於所有的具體函數都具有指導意義。高一學習的指數,對數和冪三種函數的具體性質,都是抽象函數性質在具體函數中的表現。函數的定義域,值域,單調性,奇偶性,這些內容既是抽象函數的核心內容,又是具體函數具體性質的表現。結合起來記憶,效果更好。(2) 所有和抽象函數相關的綜合問題,一定首先想辦法將抽象函數的條件化為具體條件,轉化的方法,就是利用抽象函數的性質。很多綜合題中都會出現抽象函數的條件,對於這種題目,首先要解決的就是將這些條件中的f去掉。比如f(a)<f(b),保留f,無論a與b如何簡單,不利用單調性條件去掉f,問題都解決不了。難點二:三角函數這一部分的重點是一定要從初中銳角三角函數的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數題目的時候畫直角三角形協助理解,這是十分危險的,也是我們所不提倡的。三角函數的定義在引入了實數角和弧度制之後,已經發生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數——弧度制的角。有了這樣一個思維上的飛躍,三角函數就不再是三角形的一個附屬產品(初中三角函數很多時候依附於相似三角形),而是一個具有獨立意義的函數表現形式。既然三角函數作為一種函數意義的理解,那麼,它的知識結構就可以完全和函數一章聯系起來,函數的精髓,就在於圖象,有了圖象,就有了所有的性質。對於三角函數,除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數中應用廣泛是一個道理。三角恆等變形部分,並無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發現,高一考察的三角恆等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結三角恆等變形的「統一論」,把握住降次,輔助角和萬能公式這些關鍵方法,一般的三角恆等迎刃而解。關鍵是,一定要多做題。難點三:向量部分這部分其實是這學期最簡單的部分。簡單的原因是,以前從來沒有學過,初次接觸,考試不會太難。這部分的復習也最為輕松——圍繞向量的幾何表示,代數表示和坐標表示理解向量的各種運演算法則。難點四:綜合題型壓軸題基本上,都是以函數一章作為最核心的知識載體,中間摻雜向量和三角的運算。解決這樣的題目,方法幾乎是固定的,那就是首先利用抽象函數性質,將帶有f的條件化為不帶有f的條件,然後利用三角與向量的運算化簡或證明。非壓軸題出題方法可能更自由,但是綜合性往往沒有太強,仍然屬於各個板塊內的綜合。
7. 高中一年級數學都學哪些知識點
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
8. 高一數學知識點有哪些
高一數學知識點總結:
1、函數的奇偶性
(1)若f(x)是偶函數,那麼f(x)=f(-x)。
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。
2、復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由「同增異減」判定。
數學
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精練早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
以上內容參考:網路--數學