當前位置:首頁 » 基礎知識 » 七年級上冊數學知識整理結構圖
擴展閱讀
塔吊基礎如何檢查 2025-01-12 01:48:50

七年級上冊數學知識整理結構圖

發布時間: 2022-08-04 22:14:20

㈠ 初一數學上冊各章知識點框架結構

注意:這是北師大版的數學書 人教版和這也差不多

七年級上數學復習提綱
第一章 豐富的圖形世界
1、 認識生活中常見的幾何體特點:圓柱、圓錐、正方體、長方體、稜柱、球
2、 知道常見幾何體的分類,一共分為三類:球體、柱體(圓柱、稜柱、正方體、長方體)、錐體(圓錐、棱錐)
3、 平面圖形折成立體圖形應注意:側面的個數與底面圖形的邊數相等。
4、 圓柱的側面展開圖是一個長方形;展開圖是兩個圓形和一個長方形;
圓錐的展開圖是一個扇形和一個圓形;
正方體展開圖是一個六個小正方形組成的圖形;
長方體的展開圖是與正方體的類似。(容易考到)
5、 特殊立體圖形的截面圖形:
(1)長方體、正方形的截面是:三角形、四邊形(長方形、正方形、梯形、平行四邊形)、五邊形、六邊形。
(2)圓柱的截面是:長方形、圓、橢圓。
(3)圓錐的截面是:三角形、圓、橢圓。
(4)球的截面是:圓
6、我們經常把從前面看到的圖形叫做主視圖,從左面看到的圖叫做左視圖,從上面看到的圖叫做俯視圖。
7、點動成線,線動成面,面動成體。

第二章 有理數
1 、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數。
與負數具有相反意義,即以前學過的0以外的數叫做正數(根據需要,有時在正數前面也加上「+」)。
2 、有理數
(1) 正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。0既不是正數,也不是負數。
(2) 通常用一條直線上的點表示數,這條直線叫數軸。
數軸三要素:原點、方向箭頭、單位長度。
在直線上任取一個點表示數0,這個點叫做原點。
(3) 只有符號不同的兩個數叫做互為相反數。
特別的:0的相反數是0
(4) 數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。
一個正數的絕對值是它本身
一個負數的絕對值是它的相反數;
0的絕對值是0;
兩個負數,絕對值大的反而小。
3 、有理數的加減法
(1)有理數加法法則:
①同號兩數相加,取相同的符號,並把絕對值相加。
②絕對值不相等的異號兩數相加,取絕對值較大的數符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加和為0。
③一個數同0相加,仍得這個數。
(2) 有理數減法法則:減去一個數,等於加這個數的相反數。
4、 有理數的乘除法
(1) 有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
(2) 乘積是1的兩個數互為倒數。
(3) 有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
(4) 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0

第三章、字母表示數
1、用運算符號把數和表示數的字母連接而成的字母叫做代數式。
2、求代數式值要注意:字母的取值必須確保代數式有意義;字母的取值要確保它本身所表示的數量有意義。
3、代數式的系數應包括這一項前的符號;如果代數式的某一項只含有字母因數,它的系數就是1或-1,而不是0。
4、同類項所含的字母相同;相同字母的指數也相同。
注意:同類項與系數無關,與字母的排列順序無關;幾個常數項也是同類項。
5、合並同類項法則:在合並同類項時,把同類項的系數相加,字母和其指數不變。

第四章 平面圖形及位置關系
1、直線、射線、線段
(1) 直線、射線、線段的區別:直線沒有端點;射線一個端點;線段有兩個端點。
(2) 線段公理:兩點之間,線段最短。
(3)線段的比較方法:疊和法和度量法。
2、角的度量與表示
角的三種表示方法:用三個大寫英文字母表示或用一個大寫英文字母表示(如:<ABC,<A);用希臘字母表示(如<β);用數字表示(如<1,<2)
3、 角的比較與運算
(1)角按大小分可分為銳角、直角、鈍角、平角、周角。
(2)角平分線把一個角分成兩個相等的角,角平分線是一條射線。
4、平行線
(1)如何畫平行線?
(2)平行線的性質1:過直線外一點只有一條直線與已知直線平行;
平行線的性質2:兩條直線都與第三條直線平行,那麼這兩條直線也平行。
5、垂直
(1) 如何畫垂線?
(2) 垂線的性質1:過一點只有一條直線與已知直線垂直。
垂線的性質2:直線外一點與直線上任意一點的連線中,垂線段最短。
垂直的性質3:是點到直線的距離。

第五章 一元一次方程
1、 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數x,未知數x的指數都是1次,這樣的方程叫做一元一次方程。
就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2、等式的性質:
(1). 等式兩邊加(或減)同一個數(或式子),結果仍相等。
(2) 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
3、把等式一邊的某項變號後移到另一邊,叫做移項。(要移就得變)
4、常用體積公式:
長方形的體積=長X寬X 高 ;
正方形的體積=邊長X邊長X邊長 ;
圓柱的體積=底面積X高 ;
圓錐的體積=底面積X高X1/3。

第六章生活中的數據
1、把一個大於10的數表示成1X10∩的形式(其中1≤a<10,n為正整數),就叫科學計數法。
(從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。)
2、扇形統計圖的性質:各扇形占整個圓的百分比之和為1。
3、製作扇形統計圖的步驟是什麼?
4、各統計圖的特點:
(1)扇形統計圖能清楚地表示出部分與總體的關系;
(2)折線統計圖能清楚地反映數據的趨勢;
(3)條形統計圖能清楚地表現出數據的多少

第七章 可能性
必然事件:事先能肯定它
確定事件{不可能事件:事先能肯定它一定
事件{不確定事件:事先無法肯定它
1、事情發生的可能性的大小:
機會大的不確定事件不一定發生,機會小的不確定事件也不一定不發生,機會大大小隻能說明發生的程度不同。
2、要學會判斷事情發生的可能性的大小。

㈡ 初一數學各章知識梳理圖

這里有下載地址:
http://www.40061.cn/thread-600-1-1.html
http://wenku..com/view/5502c069a45177232f60a22f.html
初一數學概念
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

對頂角的性質:對頂角相等。

三、垂直

1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b

垂直是相交的一種特殊情形。

2、垂線的性質:

①過一點有且只有一條直線與已知直線垂直;

②連接直線外一點與直線上各點的所有線段中,垂線段最短。

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)

4、空間的垂直關系

四、平行線

1、 平行線:在同一平面內,不相交的兩條直線叫做平行線。記做a‖b

2、 「三線八角」:兩條直線被第三條直線所截形成的

① 同位角:「同方同位」即在兩條直線的上方或下方,在第三條直線的同一側。

② 內錯角:「之間兩側」即在兩條直線之間,在第三條直線的兩側。

③ 同旁內角「之間同旁」即在兩條直線之間,在第三條直線的同旁。

3、 平行公理:經過直線外一點,有且只有一條直線與這條直線平行

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、 平行線的判定方法

① 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行;

② 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行;

③ 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行;

④ 平行於同一條直線的兩條直線平行;

⑤ 垂直於同一條直線的兩條直線平行。

5、 平行線的性質:

①兩條平行線被第三條直線所截,同位角相等;

②兩條平行線被第三條直線所截,內錯角相等;

③兩條平行線被第三條直線所截,同旁內角互補。

6、 兩條平行線的距離:同時垂直於兩條平行線並且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。

7、 命題:判斷一件事情的語句,叫做命題,由題設和結論兩部分組成。

五平移

1、平移:在平面內將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②「將一個圖形沿某個方向移動一定的距離」意味著「圖形上的每一點都沿著同一方向移動了相同的距離 」這也是判斷一種運動是否為平移的關鍵。③圖形平移的方向,不一定是水平的

2、平移的性質:經過平移,對應線段、對應角分別相等,對應點所連的線段平行且相等。

㈢ 求初一數學整式知識結構圖

圖就沒了…
只有文字的

整式知識點
1.
由數與字母的乘積組成的代數式叫做單項式,單獨的一個數或一個字母也是單項式。如:
等都是單項式。
2.
單項式的系數、次數,單項式中的數字因數叫做單項式的系數。如
的系數分別是5,
,單項式ab的系數是「1」,單項式
的系數是


單項式中,所有字母的指數的和叫做單項式的次數,如單項式
叫5次單項式,
叫做三次單項式。

3.
多項式及多項式的次數。

幾個單項式的和叫做多項式,在多項式中,每個單項式叫多項式的項,不含字母的項叫常數項。多項式里,次數最高項的次數,就是這個多項式的次數。

如多項式
是一個四次三項式。

多項式
是一個七次二項式。

4.
多項式的升冪排列和降冪排列:

把一個多項式按某一字母的指數從大到小的順序排列起來,叫做這個多項式按這個字母降冪排列。

把一個多項式按某一字母的指數從小到大的順序排列起來,叫做這個多項式按這個字母升冪排列。

由於多項式的項包括它前面的性質符號,因此在排列時,需帶符號一起移動,在含有兩個或兩個以上字母的多項式,按某一字母排列時,要特別注意按哪一個字母排列。

5.
整式的概念

單項式和多項式統稱為整式

6.
同類項的概念:所含字母相同,並且相同字母的次數也相同的項叫做同類項,幾個常數項也是同類項。

判斷幾個單項式(或同一個多項式的項)是不是同類項有兩個條件(1)所含有的字母相同(2)相同字母的指數分別相同。只有這兩個條件同時具備了才能說它們是同類項。

同類項與其系數無關,與字母的順序無關。

7.
合並同類項

合並同類項的法則:把同類項的系數相加,所得的結果作為系數,字母和字母的指數保持不變。

合並同類項的具體步驟:

第一步:准確地找出同類項

第二步:利用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

第三步:寫出合並結果。

8.
去括弧和添括弧

去括弧法則:括弧前是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號。

括弧前是「-」號,把括弧和它前面的「-」號去掉。括弧里各項都改變符號。

去括弧時,要連同括弧前面的符號一起去掉。

添括弧法則:所添括弧前面是「+」號,括到括弧里的各項都不變符號。

所添括弧前面是「-」號,括到括弧里的各項都改變符號。

添括弧和去括弧的過程正好相反,添括弧是否正確,不妨用去括弧檢驗一下。

9.
整式的加減

整式的加減實際上就是合並同類項,在運算中如果遇到括弧,要先運用去括弧法則(或分配律),去掉括弧後再合並同類項,只要算式中沒有同類項了,就是運算的最後結果。

㈣ 初一上學期數學知識點歸納

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

㈤ 初一數學第一章知識結構圖

無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογο�0�9 ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。

理數是實數中不能精確地表示為兩個整數之比的數,即無限不循環小數。 如圓周率、2的平方根等。

實數(real munber)分為有理數和無理數(irrational number)。

·無理數與有理數的區別:

1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限循環小數,

比如4=4.0, 4/5=0.8, 1/3=0.33333……而無理數只能寫成無限不循環小數,

比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不循環小數.

2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉「無理」的帽子,把有理數改叫為「比數」,把無理數改叫為「非比數」。本來嘛,無理數並不是不講道理,只是人們最初對它不太了解罷了。

利用有理數和無理數的主要區別,可以證明√2是無理數。

證明:假設√2不是無理數,而是有理數。

既然√2是有理數,它必然可以寫成兩個整數之比的形式:

實數包括有理數和無理數。其中無理數就是無限不循環小數和開根開不盡的數,有理數就包括無限循環小數、有限小數、整數

自然數(natural number)
用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。自然數由0開始 , 一個接一個,組成一個無窮集合。自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。自然數是人們認識的所有數中最基本的一類,為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論棗自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。
序數理論是義大利數學家G.皮亞諾提出來的。他總結了自然數的性質,用公理法給出自然數的如下定義。
自然數集N是指滿足以下條件的集合:①N中有一個元素,記作1。②N中每一個元素都能在 N 中找到一個元素作為它的後繼者。③ 1是0的後繼者。④0不是任何元素的後繼者。 ⑤不同元素有不同的後繼者。⑥(歸納公理)N的任一子集M,如果1∈M,並且只要x在M中就能推出x的後繼者也在M中,那麼M=N。
基數理論則把自然數定義為有限集的基數,這種理論提出,兩個可以在元素之間建立一一對應關系的有限集具有共同的數量特徵,這一特徵叫做基數 。這樣 ,所有單元素集{x},{y},{a},{b}等具有同一基數 , 記作1 。類似,凡能與兩個手指頭建立一一對應的集合,它們的基數相同,記作2,等等 。自然數的加法 、乘法運算可以在序數或基數理論中給出定義,並且兩種理論下的運算是一致的。
自然數在日常生活中起了很大的作用,人們廣泛使用自然數。
「0」是否包括在自然數之內存在爭議,有人認為自然數為正整數,即從1開始算起;而也有人認為自然數為非負整數,即從0開始算起。目前關於這個問題尚無一致意見。不過,在數論中,多採用前者;在集合論中,則多採用後者。目前,我國中小學教材將0歸為自然數!
自然數是整數,但整數不全是自然數。
例如:-1 -2 -3......是整數 而不是自然數

全體非負整數組成的集合稱為非負整數集(即自然數集)

所謂質數或稱素數,就是一個正整數,除了本身和 1 以外並沒有任何其他因子。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(有人認為數目字 1 不該稱為質數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的「位置關系」確定「數量關系」
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.

典型例題從書本上很容易找到。

㈥ 初一數學上冊知識點,思維導圖急用

思維導圖,也被稱為思維導圖是一種有效的圖形化工具,想表達的推出思想。一種革命性的思維工具。簡單但非常有效!思維導圖使用的圖形並重的技能,和主題的關系,在各級體現相互隸屬的層次結構圖,主題關鍵字和圖像,色彩,創建一個內存鏈接,思維導圖的左,右大腦充分利用功能,記憶,閱讀,思考法律,以幫助人們平衡科學與藝術,邏輯和想像力的發展,從而開啟人類大腦的無限潛力。思維導圖因此,人的心靈的力量。
?思維導圖是一個特定的放射性思維。我們知道,放射性思維是自然的方式思考人的大腦,每一個進入大腦,無論感受,記憶或想法 - 包括文字,數字,符號,食物,香氣,線條,色彩,意象,節奏,音符等等,都可以成為一個思考中心,並由此中心向外發散成千上萬的關節,每一個關節點代表的中心主題的一個環節,每個環節都可以成為另一個中心主題的向外發散數千關節,這些關節的鏈接,你的記憶,是你的個人資料庫。
人類從出生開始積累這樣一個龐大而復雜的資料庫驚人的存儲容量的大腦,使我們積累了大量的信息,通過思維導圖的放射性思維方法,除了加速累積的數據量,數據?是分級分類管理的基礎上彼此之間的相關性,因此,數據存儲,管理和更系統的應用,提高營運效率的大腦。同時,思維導圖是最好用的左腦和右腦的功能,顏色,圖像,符號使用,將不僅幫助我們的記憶中,提高我們的創造力,也讓心靈更有趣,並且有個人的性格特點和多方面的。
?思維導圖的收放自如放射性思維模式的基礎上,除了提供一個正確和快速學習的方法和工具使用與創意,項目規劃的銜接,解決問題和分析,會議管理,令人驚訝的結果往往。這是表演極端個人智力潛能的方法來提高的思維能力將顯著增強記憶力,組織能力和創造力。的飛躍差分法與傳統的筆記和學習方法,主要是因為它是從腦生理學的學習互動模式,並進行人類是天生的放射性思維能力和多感官學習特性。
?心靈上圖提供一個有效的人類思維的圖形化工具,使用圖形技術都打開人類大腦的無限潛力。充分利用思維導圖的左,右大腦功能,幫助人們科學與藝術,邏輯和想像力之間的平衡。的思維導圖完整的邏輯架構和全腦思維,近年來已被廣泛應用在世界和中國學習和工作,並顯著減少所需的時間耗費和物力資源,每個人或公司業績大幅增加,不可避免地產生巨大的效益,是不可忽視的。
?思維導圖的創始人托尼·巴贊(東尼?博贊),他的大腦先生,國際知名,成為總統的英國頭腦基金會,誰是國際奧委會的教練和運動員的顧問,也擔任英國奧運賽艇隊,國際象棋的顧問團隊;被選定為國際心理學家理事會委員會的成員,創作的「精神文化的概念,也是」世界記憶錦標賽協會發起的心理奧運會組織的創始人,致力於幫助那些有學習障礙的人也有標題的世界創造力IQ最高的。截至1993年,托尼·巴贊已經出版了20本書,其中包括19專論的思想,創造力和學習,以及一本詩集。

㈦ 初一上學期數學結構樹狀圖

就是把這學期學的知識點按照它們之間的關系畫個圖標,基本上把教材目錄抄一遍就行

㈧ 人教版初中數學知識結構圖

第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。
5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。
第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。
7.2 與三角形有關的角
三角形的內角和等於180度。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角
7.3 多邊形及其內角和
n邊形內角和等於:(n-2)•180度
多邊形(polygon)的外角和等於360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。
9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
第十章 實數
10.1 平方根
如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。
10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。
我才是七年級的,對不起,只能幫到這了。。。。。。。