㈠ 高一數學數列知識要點詳細理一遍!(蘇教版)
www.xueke.com.cn
去上面下課件
㈡ 數列知識點中『Sn』是什麼數列難嗎
Sn 是數列的前n項和,數列是高中數學的重點,高考必考,有一定難度。
㈢ 我想知道高考數學的數列經常和哪些知識點混在一起考或者平時的數列題目經常和哪些知識點混在一起考
通過廣東高考卷07---10四年情況來看,數列部分大題目(10年沒有大題目)都是以函數或一元二次方程為載體,(通常都在最後一題)主要考點是以求構造法求遞推數列通項公式,數列不等式證明(歸納法,放縮法),數列求和三類為主。小題目主要在選擇題上通常是等差等比數列基本性質予以考察。
㈣ 誰能總結一套高中數列全部知識點和方法,謝謝!
裂項法
裂項法求和
這是分解與組合思想在數列求和中的具體應用.
裂項法的實質是將數列中的每項(通項)分解,然後重新組合,使之能消去一些項,最終達到求和的目的.
通項分解(裂項)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n!
[例1]
【分數裂項基本型】求數列an=1/n(n+1)
的前n項和.
解:an=1/n(n+1)=1/n-1/(n+1)
(裂項)
則
sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂項求和)
=
1-1/(n+1)
=
n/(n+1)
[例2]
【整數裂項基本型】求數列an=n(n+1)
的前n項和.
解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂項)
則
sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂項求和)
=
(n-1)n(n+1)/3
小結:此類變形的特點是將原數列每一項拆為兩項之後,其中中間的大部分項都互相抵消了。只剩下有限的幾項。
注意:
餘下的項具有如下的特點
1餘下的項前後的位置前後是對稱的。
2餘下的項前後的正負性是相反的。
易錯點:注意檢查裂項後式子和原式是否相等,典型錯誤如:1/(3×5)=1/3-1/5(等式右邊應當除以2)
附:數列求和的常用方法:
公式法、裂項相消法、錯位相減法、倒序相加法等。(關鍵是找數列的通項結構)
1、分組法求數列的和:如an=2n+3n
2、錯位相減法求和:如an=n·2^n
3、裂項法求和:如an=1/n(n+1)
4、倒序相加法求和:如an=
n
5、求數列的最大、最小項的方法:
①
an+1-an=……
如an=
-2n2+29n-3
②
(an>0)
如an=
③
an=f(n)
研究函數f(n)的增減性
如an=
an^2+bn+c(a≠0)
6、在等差數列
中,有關sn
的最值問題——常用鄰項變號法求解:
(1)當
a1>0,d<0時,滿足{an}的項數m使得sm取最大值.
(2)當
a1<0,d>0時,滿足{an}的項數m使得sm取最小值.
在解含絕對值的數列最值問題時,注意轉化思想的應用。
㈤ 高中數列知識點有哪些
列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。
數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。題目中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。
㈥ 求高中數學的知識點
常用的知識點
一、集合、簡易邏輯、推理與證明
1、集合中的元素具有確定性、互異性、無序性.
2、描述法表示的集合一定要注意代表元素,注意區分是點集還是數集.
3、分析子集或真子集(或應用條件 )時是否忽略 的情況.
4、解集合問題時應注意分類討論,不要忘了藉助數軸或文氏圖進行求解,同時注意端點值是否相等.
5、四種命題及其相互關系,互為逆否命題同真假.復合命題的真假如何判斷?
6、「命題的否定」與「否命題」是兩個不同的概念.命題的否定即「非p」,是對命題結論的否定;否命題是對原命題「若p則q」既否定條件又否定其結論.
7、全稱命題、特稱命題的否定是怎樣的?全稱命題為真需推證對所有的條件結論都成立,只要有一個反例就可以判斷全稱命題為假;特稱命題只要找到使結論成立的一個條件就可判斷為真,只有推證所有的條件都不能使結論成立才能判斷為假.
8、充要條件的概念及判斷(定義法、集合法).充要關系的判斷可以轉化為判斷其逆否命題,也可以用反例或問題的特殊性作為推理的依據.
9、判斷條件的充要關系時,要弄清充分條件與必要條件、充分條件與充要條件的區別.考慮問題要全面准確,使結論成立的充分條件或必要條件可以不只一個.
10、推理形式包括哪幾種?常用的證明方法有哪些?是否掌握了每種證明方法的要求.
二、函數、導數、不等式
11、映射與函數的概念了解了嗎?映射 中,你是否注意到了A中元素的任意性和B中與它對應元素的唯一性.
12、函數的三要素及三種題型.注意定義域、值域為非空數集;定義域、值域要寫成集合或區間的形式.
13、在解決函數問題時你是否注意到「定義域優先」的原則.
14、求函數的解析式時,你是否標明了定義域;判斷函數的奇偶性時,是否先檢驗函數的定義域關於原點對稱.
15、判定函數的單調性(求單調區間)時,你是否先求出定義域?是否錯誤地在各個單調區間之間添加了符號「 」和「或」.
16、函數單調性的判定方法是什麼?(定義、圖像、導數).復合函數單調性的判斷遵循「同增異減」的原則.是否掌握了已知函數的單調性求參數范圍的方法?
17、特別注意函數單調性和奇偶性的逆用(比較大小、解不等式、求參數范圍).
18、下列結論記住了嗎?
①如果函數f (x)滿足f (a+x)= f (a-x)或f (x)= f (2a-x),則函數f (x)的圖像關於x=a對稱;
②如果函數f (x)滿足f (a+x)= - f (a-x)或f (x)= - f (2a-x),則函數f (x)的圖像關於點(a,0)對稱;
③如果函數f (x)滿足f (x+T)= -f (x)或f (x+T)= ,則函數f(x)的周期為2T.
19、函數的奇偶性、對稱性、周期性之間又怎樣的關系?(知道其中的兩個可求第三個)
20、函數的零點、方程的根、函數圖像與x軸的交點的橫坐標之間的關系.怎樣判斷函數y=f (x)在所給區間 (a,b)上是否有零點? 與函數有零點的關系是怎樣的?
22、三個「二次」的關系和應用掌握了嗎?求二次函數的最值時用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系.求參數的范圍可轉化為根的分布.
23、特別提醒:二次方程ax2+bx+c=0的兩根為不等式ax2+bx+c>0(<0)解集的端點值,也是二次函數y=ax2+bx+c的圖像與x軸交點的橫坐標.
24、研究函數問題准備好「數形結合」這個工具了嗎?
25、函數圖像的變換有哪幾種?(平移、伸縮、對稱)
26、函數 的圖像及單調區間掌握了嗎?如何利用它求函數的最值?與利用不等式求函數的最值的聯系是什麼?
27、恆成立問題不要忘了「主參換位」,注意驗證等號是否成立.注意分離參數的方法.
28、解分式不等式應注意什麼問題?(不能去分母,常採用移項通分求解)
29、解指數、對數不等式應注意什麼問題?(化同底,利用單調性求解.注意底數不為1,對數的真數大於0)
30、不等式| ax+b | < c, | ax+b | > c (c>0)及不等式| x+a | +| x+b| >c(<c)的解法掌握了嗎?(幾何意義、零點分區間法、圖像法)
31、會用不等式| a +b| | a | + | b | 、| a +b| | a- c | + | c-b |解(證)一些簡單問題.
32、利用基本不等式求最值時,易忽略其使用的條件.(一正二定三相等)
33、重要不等式是指那幾個不等式 ,由它推出的不等式鏈是什麼?
34、不等式證明的基本方法掌握了嗎?(比較法、綜合法、分析法、反證法、放縮法、數學歸納法、單調性法)
35、注意線性規劃的常見題型.線性規劃問題中你是否考慮到目標函數中z的幾何意義?
36、導數的定義還記得嗎?它的幾何意義和物理意義分別是什麼?
37、常見函數的求導公式與和、差、積、商的求導法則及復合函數的求導法則你都熟記了嗎?
38、利用導數可解決哪些問題,具體步驟是什麼?(切線、單調性、極值、最值)
39、函數的單調性和導函數的符號之間又怎樣的關系?(充分條件) 極值點與使導函數值為0的點之間有怎樣的關系?(必要條件)
40、三次函數y = ax3 + bx2 + cx + d (a 0)的圖像你熟悉嗎?單調性如何?它的對稱中心是什麼?
41、你能根據函數的單調性、極值畫出函數的大致圖像嗎?藉助函數的圖像如何求已知函數在動區間上的極值(最值)?
42、已知函數零點的個數、兩函數圖像交點的個數、兩函數圖像的位置關系如何求參數范圍?
三、三角函數
43、你對象限角、銳角、小於900的角、負角、終邊相同的角等概念理解有誤嗎?角度制與弧度制是否混用?
44、記住三角函數的兩種定義了嗎?(比值定義、有向線段定義)
45、利用三角函數線和圖像解三角不等式是否熟練?
46、求三角函數的值時是否考慮到x的范圍?是否習慣用圖像或單調性求解.
47、三角變換公式你記熟了嗎?(同角三角關系、誘導公式、兩角和差的三角函數、倍角公式)
48、已知三角函數值求角時,要注意三角函數的選擇、角的范圍的挖掘.
49、三角變換過程中要注意「拆角、拼角」、切化弦的問題.
50、如何求函數y = Asin(ωx +φ)的單調區間、對稱軸(中心)、周期?(求單調區間時要注意A、ω的正負;求周期時要注意ω的正負)
51、「五點作圖法」你是否熟練掌握?如何作函數y = Asin(ωx +φ)的圖像?如何由圖像確定函數的解析式?(關鍵是確定A、ω、φ)
52、由y = sinx → y = Asin(ωx +φ)的變換你掌握了嗎?反之怎樣?
53、求y = sinx +cosx+ sinxcosx類型的函數的值域,換元時令 時,要注意 .
54、在解決三角形問題時,要及時應用正、餘弦定理進行邊角之間的轉化.
四、數列、數學歸納法
55、利用等差、等比數列的定義: ( )要重視條件 .
56、求等比數列的前n項和時,要注意分q = 1和q≠1兩種情況.
57、數列求通項有幾種方法?(公式、遞推關系、歸納猜想證明).數列求和有幾種常用方法?(公式、錯位相減、裂項相消)
58、已知Sn 求an時你是否考慮到分n=1和n≠1兩種情況?
59、如何解決數列中的單調性、最值問題?
60、應用數學歸納法時,一要注意步驟齊全(兩步三結論);二要注意從n = k到n = k+1的過程中,先應用歸納假設,再靈活應用比較法、分析法等其它方法.
61、你是否注意到數列與函數、方程、不等式的結合?
五、平面向量、解析幾何
62、記住直線的傾斜角的范圍,直線的斜率和傾斜角的關系是怎樣的?
63、何為直線的方向向量?直線的方向向量與直線的斜率有何關系?
64、直線方程有幾種形式,各有什麼限制?是否注意到x = my + n形式的運用?
65、截距是距離嗎?「截距相等」意味著什麼?
66、兩直線A1x + B1y + C1=0與A2x + B2y + C2=0平行、垂直的充要條件分別是什麼?
67、要熟記點到直線的距離公式、兩平行線間的距離公式.
68、解析幾何中的對稱有幾種?(軸對稱、中心對稱)分別如何求解?
69、求曲線方程的一般步驟是什麼?求曲線的方程與求曲線的軌跡有什麼不同?求軌跡的常用方法有哪些?
70、直線和圓的位置關系如何判定(幾何法、代數法)?直線和圓錐曲線的位置關系怎樣判定?
71、圓錐曲線方程中a、b、c與e的關系記住了嗎?
72、解題中是否注意到圓錐曲線定義的應用?要注意圓中由半徑、弦心距和半弦長構成的直角三角形;橢圓、雙曲線中的特徵三角形和焦點三角形.
73、記住圓、橢圓、雙曲線、拋物線中的常用結論.
74、容易忽略雙曲線一支上的點P到相應焦點F的距離| PF |≥c-a這一條件來取捨.
75、記住解析幾何的常見題型了嗎?(位置關系問題、弦長問題、對稱問題、中點弦問題、定點問題、定線問題、定值問題等)
76、記住解析幾何中常用的解題方法(如設而不求、點差法等.用點差法求弦所在直線方程時要注意檢驗.)
77、在直線與圓錐曲線的有關計算中,經常由二次曲線方程與直線方程聯立消元得形如Ax2 + Bx + C = 0的方程,在後面的計算中務必要考慮兩個問題:①A與0的關系;②判別式△與0 的關系,你想到了嗎?
78、解析幾何問題的求解中,是否注意到平面幾何知識的利用?如何挖掘平面幾何圖形中的隱含條件?是否注意到向量在解析幾何中的運用?
79、解析幾何中常用的數學思想方法:換元的思想,方程的思想,整體的思想等.解題中會考慮嗎?
六、立體幾何
80、空間圖形應注意的兩個問題:一是根據空間圖形正確識別空間元素點、線、面的位置關系,二是要注意改變視角,能正確判定空間圖形位置、形狀及存在的數量關系,尋找解題思路或途徑.
81、立體幾何雖是平面幾何的繼續和發展,但並不是所有平面幾何的結論都能無條件地推廣到立體幾何中.
82、由幾何體(或直觀圖)作三視圖,及由三視圖還原幾何體(或畫出相應的直觀圖)你熟練嗎?注意到線的虛實了嗎?
83、立體幾何中,平行、垂直關系可以進行以下轉化:線‖線 線‖面 面‖面,線⊥線 線⊥面 面⊥面.這些轉化的依據是什麼?
84、異面直線所成角的范圍是什麼?線面角的范圍是什麼?二面角的范圍是什麼?
85、求作線面角的關鍵是找直線在平面上的射影.
86、作二面角的平面角的方法有哪些?(利用定義、三垂線法、作二面角的棱的垂面).這些方法你掌握了嗎?
87、立體幾何的求解問題分為「作」、「證」、「算」三個部分,你是否只重視了「作」、「算」,而忽視了「證」這一環節?
88、會求直線的方向向量、平面的法向量嗎?如何利用向量法求異面直線所成的角、線面角、二面角的大小?
89、用向量研究角的有關問題時,是否弄清了向量夾角與圖形角的關系?
90、用空間向量的坐標來解決立體幾何題,要合理建系並且要建立右手直角坐標系,正確地寫出需用點的坐標,注意向量表達與圖形表達的轉化.
91、你是否記住了以下結論:
①從點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面BOC上的射影在∠BOC的平分線上.
②已知長方體的體對角線與過同一頂點的三條棱所成的角分別為,則有cos2α+cos2β+cos2γ=2.
③正方體、長方體的外接球的直徑等於其體對角線的長.
七、排列、組合、二項式定理、概率統計
92、選用兩個原理的關鍵是什麼?(分類還是分步)
93、排列數、組合數的計算公式你記住了嗎?它們的條件限制你注意了嗎?
94、組合數有哪些性質?在楊輝三角中如何體現?
95、排列與組合的區別和聯系你清楚嗎?解決排列組合問題的常用方法你掌握了嗎?解綜合題可別忘了「合理分類、先選後排」啊!
96、排列應用題的解決策略可有直接法和間接法;對附加條件的組合應用題,你對「含」與「不含」,「至多」與「至少」型題一定要注意分類或從反面入手啊!
97、求二項展開式特定項一般要用到二項式的展開式的通項.
98、二項式定理的主要應用有哪些?
99、二項式定理(a+b)n與(b+a)n展開式上有區別嗎?定理的逆用熟悉嗎?
100、求二項(或多項)展開式中特定項的系數你會用組合法解決嗎?
101、「二項式系數」與「項的系數」是兩個不同的概念.求系數問題常用賦值法!求展開式中系數最大的項(或系數絕對值最大的項)的方法你熟悉嗎?千萬要注意解法技巧的變形啊!
102、二項式展開式各項的二項式系數和、奇數項的二項式系數和、偶數項的二項式系數和,奇次(偶次)項的二項式系數和你能區分開嗎?它們的項的系數和呢?
103、四種常見的概率類型你掌握了嗎?是否注意到每種概率應用的前提?
104、在用幾何概型求概率時你是否能正確選擇幾何量?(線段長度、區域面積、幾何體體積)
105、求隨機事件概率的問題常用的思考方法是:正向思考時要善於將復雜的問題進行分解,解決有些問題時還要學會運用逆向思考的方法.是否注意到「至多」、「至少」事件概率的求法有分類、間接兩種.
106、概率應用題你有寫「答語」的習慣嗎?解題的步驟完整嗎?求分布列的解答題你能把步驟寫全嗎?求期望、方差的步驟齊全嗎?
107、記住常用的三個分布.二項分布的期望和方差公式是什麼?
108、正態密度曲線有怎樣的性質?你會利用它的對稱性求概率嗎?
109、抽樣方法有哪些?它們具有怎樣的聯系與區別?
110、用樣本估計總體的方法有幾種?具體是什麼?
111、統計圖有幾種?頻率分布直方圖、條形圖中縱軸的意義相同嗎?對各種統計圖你能正確應用嗎?
112、樣本的數字特徵有幾種?你能正確應用它們對總體進行估計嗎?
113、變數間的關系包括哪幾種?你能應用最小二乘法求線性回歸方程、並作出預測嗎?
114、獨立性檢驗的基本思想是什麼?如何根據K2的值判斷兩個變數存在關系的可能性的大小?
八、演算法初步、復數
115、你能正確區分、使用各種框圖嗎?(起止框、輸入輸出框、處理框、判斷框)
116、對各種演算法語句你能正確理解和使用嗎?是否熟悉賦值語句與數列的關系?
117、在循環結構中能正確判斷循環的次數嗎?
118、對所給的程序框圖、程序,你能讀懂嗎?能給出正確的運算結果嗎?能正確判斷缺少的條件嗎?
119、你熟悉復數與實數的關系嗎?是否記住實數、虛數、純虛數定義中的條件?
120、復數不能比較大小.記住復數相等的定義,會利用復數相等把復數問題實數化.
121、記清復數的幾何意義.記住復數、復平面內的點、向量之間建立了一一對應的關系.
122、你能熟練進行復數的加、減、乘、除運算嗎?這是高考的常考題型!
九、基本方法
123、解答選擇題的特殊方法是什麼?(估演算法、特值法、特徵分析法、直觀選擇法、逆推驗證法)
124、解答開放型問題時,透徹理解問題中的新信息,這是准確解題的前提.
125、解答多參型問題時,關鍵在於恰當地引出參變數,設法擺脫參變數的困擾.這當中,參變數的分離、集中、消去、代換以及反客為主等策略,似乎是解答這類問題的通性方法.
126、在分類討論時,要做到「不重不漏,層次分明」,最後要進行總結.
127、做應用題時,運算後的單位要弄准,不要忘了「答」及變數的范圍;在填寫填空題中的應用題的答案時,要寫上單位.
128、換元的思想,逆求的思想,從特殊到一般的思想,方程的思想,整體的思想等,在解題中你會考慮嗎?
129、在解答題中,如果要應用教材中沒有的重要結論,則在解題過程中要給出簡單的證明.
㈦ 高考數學數列怎麼考考場的知識點有哪些
高考關於數列方面的命題主要有以下三個方面;(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。
數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。題目中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。
㈧ 求高中數學基礎知識提綱
希望能幫到你、、、、、、、、、、、、
高中數學知識點總結
高中數學立體幾何初步知識點總結:
立體幾何初步:①柱、錐、台、球及其簡單組合體等內容是立體幾何的基礎,也是研究空間問題的基本載體,是高考考查的重要方面,在學習中應注意這些幾何體的概念、性質以及對面積、體積公式的理解和運用。②三視圖和直觀圖是認知幾何體的基本內容,在高考中,對這兩個知識點的考查集中在兩個方面,一是考查三視圖與直觀圖的基本知識和基本的視圖能力,二是根據三視圖與直觀圖進行簡單的計算,常以選擇題、填空題的形式出現。③幾何體的表面積和體積,在高考中有所加強,一般以選擇題、填空、簡答等形式出現,難度不大,但是常與其他問題一起考查④平面的基本性質與推理主要包括平面的有關概念,四個公理,等角定理以及異面直線的有關知識,是整個立體幾何的基礎,學習時應加強對有關概念、定理的理解。⑤平行關系和垂直關系是立體幾何中的兩種重要關系,也是解決立體幾何的重要關系,要重點掌握。
高中數學平面解析幾何初步知識點總結:
平面解析幾何初步:①直線與方程是解析幾何的基礎,是高考重點考查的內容,單獨考查多以選擇題、填空題出現;間接考查則以直線與圓、橢圓、雙曲線、拋物線等知識綜合為主,多為中、高難度試題,往往作為把關題出現在高考題目中。直接考查主要考查直線的傾斜角、直線方程,兩直
高中數學集合知識點總結:
作為高中數學的一種基本語言及工具,幾乎為每年高考的必考內容,多以選擇題出現,分值約占總分的3%-5%,多與函數、不等式、數列等知識聯系而命制小型綜合題,根據新課標考試大綱的要求,集合關系與集合運算為考試重點,因此既要牢固掌握集合基本概念與運算,又要加強集合與其他數學知識的聯系,突出集合的工具性,尤其是熟練進行集合的自然語言、圖形語言、符號語言的相互轉化。
線的位置關系,點到直線的距離,對稱問題等,間接考查一定會出現在高考試卷中,主要考查直線與圓錐曲線的綜合問題。②圓的問題主要涉及圓的方程、直線與圓的位置關系、圓與圓的位置關系以及圓的集合性質的討論,難度中等或偏易,多以選擇題、填空題的形式出現,其中熱點為圓的切線問題。③空間直角坐標系是平面直角坐標系在空間的推廣,在解決空間問題中具有重要的作業,空間向量的坐標運算就是在空間直角坐標系下實現的。空間直角坐標系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標運算結合起來運用,也不排除出現考查基礎知識的選擇題和填空題。
高中數學函數概念與基本初等函數ⅰ知識點總結:
函數概念與基本初等函數ⅰ:①函數是高中數學最重要、最基礎的內容,函數的思想方法貫穿於各章的知識中,函數問題在每年的高考中,不但以
高中數學演算法初步知識點總結:
演算法初步:①演算法是新課標增加的內容,以選擇題或填空題的形式考查,應該注意理解演算法的基本概念與特徵,注意演算法的本質是解決問題的一種程序性方法,學會演算法的自然語言。框圖程序設計語言等的相互轉化。②基本演算法語句也是新課標增加的內容,是數學及其應用的重要組成部分,預計高考對本部分的考查可能與代數、幾何中的有關知識結合,以選擇題、填空題的形式考查對幾種基本演算法語句的理解和應用。
選擇題、填空題的形式出現,而且幾乎每年都有一道解答題,考查內容重點涉及函數的概念、圖像、性質等各個方面,難度在低、中、高檔方面均有體現。②函數和方程為新課標新增添內容,要求結合二次函數的圖像,了解函數的零點與方程根的聯系,能判斷一元二次方程的根的存在性及根的個數;根據具體函數的圖像,能夠用二分法求相應方程的近似解,本部分知識蘊含著數形結合的思想、函數與方程的思想,在學習時注意體會。③學習數學是為了應用數學,指數函數、對數函數以及冪函數等都是重要的基本初等函數,是函數概念的具體體現於綜合應用,和其他函數一樣,對於它們的定義、圖像以及性質等是高考考查的重點,與其他函數、方程、不等式以及數列相融合的知識也是考查的熱點。
高中數學統計知識點總結:
統計:①隨機抽樣在高考中主要是選擇題或填空題,考查學生對各種抽樣方法的理解,一次學習時應加強對這三種抽樣飛的理解,搞清三種抽樣法的區別和聯系。②樣本估計法也是以小題為主,考查排列分布直方圖、平均數、標准差等的概念的理解和應用,學習時應結合實例理解樣本估計總體的思想,加深對;頻率分布直方圖的理解與應用,能從數據中抽取基本的數字特徵,並記准相應的公式。③變數的相關性的重點是變數間的線性相關及兩個變數的線性相關、最小二法思想、回歸方程的建立以及對回歸直線與觀測數據的理解。
高中數學概率知識點總結:
概率:①隨機事件的概率為近幾年新增添的內容,高考中主要以選擇題、填空題的形式出現,與其他知識綜合考查其應用,學習時,應通過基礎知識的學習理解其基本概念、基本原理,然後在此基礎上解決生活中的有關問題,還要理解隨機事件發生的不確定性和頻率的穩定性等知識。②古典概型是概率中最基本的一個概率模型,高考中,主要是利用古典概型的概率公式解決一些古典概型的應用題,考查形式可以是選擇題、填空題、解答題。③幾何概型是新增添內容,高考可能會有所側重,主要以選擇題、填空題出現,應注意基本概念的理解。
高中數學基本初等函數ⅱ(三角函數)知識點總結:
基
高中數學平面向量 知識點總結:
平面向量:在近幾年的高考中,平面向量每年都考,而且有加強的趨勢,在學習中應抓住兩個方面:一是向量的概念、性質、運算;二是應用向量解決距離、夾角、垂直、模的問題。學會運用向量處理三角函數、解析幾何、平面幾何、實際應用等綜合問題,以發展運算求解能力和解析、解決
高中數學三角恆等變形知識點總結:
三角恆等變形:①兩角和與差的三角函數公式是歷年高考的重要內容,而且有進一步加強的趨勢。因此公式應用講究一個活字,深刻理解各個公式之間的聯系,掌握公式應用的通性通法是學習的關鍵。②三角恆等變形中的三角函數求值、化簡及恆等證明是高考是熱點,需要掌握的公式有兩角和差、倍角的三角函數公式。學習的重點是掌握變換的基本思想方法,不是盲目地訓練繁難 偏題、怪題,應注重通性、通法的運用。
實際問題的能力。
本初等函數ⅱ(三角函數):①三角函數是中學中重要的初等函數之一,它的定義和性質有十分明顯的特徵和規律性,它和代數、幾何有著密切的聯系,是研究其他部分知識的重要工具,在實際問題中也有重要的應用,是高考對基礎知識和基本技能考查的重要內容之一。②在高考中主要有四類問題:一是與三角函數單調性有關的問題,二是與三角函數圖像有關的問題,三是應用同角變換和誘導公式,求三角函數及化簡和等式證明的問題,四是與周期和奇偶性有關的問題。③高考中多以選擇題、填空題形式出現,但也不排除在解答題中單獨出現,其難度為中、低檔。
高中數學解三角形知識點總結:
解三角形:在高考試題中,有關解三角形的問題主要考查正弦定理、餘弦定理及利用三角公式進行恆等變形的能力,以化簡、求值或判斷三角形的形狀為主,也與其他知識結合,考查解決綜合問題的能力。有關解三角形的題型主要是選擇題、填空題、解答題等,一般為簡單題或中檔題。
高中數學數列知識點總結:
數列:數列是高中數學的重要內容,是中學數學聯系實際的主要渠道之一,數列與數、式、函數、方程、不等式、三角函數、解析幾何的關系十分密切。數列中的遞推思想、函數思想、分類討論思想以及數列求和、求通向公式的各種方法和技巧在中學數學中有著十分重要的地位,因此數列知識可以命綜合性強的試題。每年高考中與數列有關的試題約佔全卷的10%-15%,基因數列內容的客觀題,也有數列與相關內容結合的綜合題與實際應用題。
高中數學不等式知識點總結:
不等式:①不等關系是客觀世界中量與量之間的一種主要關系,而不等式則是反映這種關系的基本形式,一直是高考考查的重點內容,尤其以實際問題、函數為背景的綜合題較多。不等式的定義域性質是不等式的基礎,許多不等式的定理、公式都是在此基礎上推理、拓展而成的,因此學校時要抓住基本概念和性質,熟練掌握性質的變形及其應用,不斷提升思維的深度和廣度,才能在解決與不等式有關的綜合題上有備無患、得心應手。②一元二次不等式是歷年考查的重點,因為其與一元二次函數、一元二次方程等聯系密切,內容交融,經常考查含參數的不等式的求解、恆成立問題、一元二次不等式的實際應用、綜合推理題等。因此學習時應該通過圖像了解一元二次不等式與相應的二次函數、二次方程的聯系。③線性規劃問題是眾多知識的交匯點,在實際生活、實際生產中的應用十分廣泛,而且在線性規劃問題的解決中,需要用到多種數學思想方法。所以線性規劃也是高考命題的熱點內容。高考中主要考查平面區域的表示。線性目標函數的最值等問題,主要以選擇題、填空題的形式出現,有時也以解答題的形式出現。
㈨ 高中數學數列的相關內容
數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an= Sn-Sn-1
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn=na1+[n(n-1)/2]d
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式: an= a1 q^(n-1),an= ak q^(n-k)
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn=a1(q^n-1)/(q-1)
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:如an=
30、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。