當前位置:首頁 » 基礎知識 » 高中數學平面向量知識點總結大全
擴展閱讀
文件里的歌怎麼看歌詞 2025-01-12 09:39:35

高中數學平面向量知識點總結大全

發布時間: 2022-08-03 04:16:34

A. 高中數學知識點整理

下面,我分章節講一下數學的主幹內容:那些雖然課本上沒有,但是必須講也必須學會的東西。

目錄(未完待更新):
零,總論與試卷分析(就是上文內容)
一,函數
1.1 集合
1.2 函數的定義域
1.3 函數的值域
1.4 單調性
1.5 奇偶性,對稱性,周期性
1.6 指數函數,對數函數
1.7 復合函數
1.8 含參函數
二,三角函數(僅函數部分,解三角形部分等講完平面向量和平面幾何再說)
2.1 正弦,餘弦,正切
2.2 三角函數線
2.3 三角函數的基本形式與伸縮
2.4 三角變換公式和萬能公式
2.5 三角函數最值問題
三,平面幾何,平面向量,與直線與圓的方程
3.1 平行線和相交線
3.2 三角形
3.3 圓
3.4 基向量,正交基,和坐標系
3.5 平面向量與基本幾何圖形
3.6 向量運算律與推論
3.7 直線方程
3.8 圓的方程
3.9 用向量解決平面幾何問題
四,解三角形
4.1 正弦定理
4.2 餘弦定理
4.3 正弦定理和餘弦定理的應用
4.4 解三角形中的多解問題
4.5 解三角形中的最值問題
五,立體幾何
5.1 基本幾何體:柱,錐,台,球
5.2 三視圖與直觀圖
一,函數
1.1 集合。
集合的元素必須是確定的,並且是唯一的。比如,一個集合里不能有兩個「1」。
1.2 函數的定義域。
除了最常見的幾個:分母不為零,對數函數的真數大於零,偶數次方的被開方數不為負(注意我前面幾個表述,其中暗含了區間的開閉),正切餘切函數不能恰好取定義中分母為零的角度(正切餘切都是用比值定義的) 還一定要注意一個容易被忽略的易錯點: 無定義。
1.3 函數的值域
分離常數法 判別式法 換元法 基本不等式法 等等幾種方法,看起來方法非常繁多,似乎挺難總結,但是,我們如果按題目的形式進行總結,每種只需要掌握一種,或者兩種就可以了

B. 高中數學所有知識點歸納

高中數學基礎知識梳理(數學小飛俠)

鏈接:

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

C. 高中向量知識梳理

一、平面向量 定義:既有大小又有方向的量叫向量。例:力、速度、加速度、沖量等 注意:1(數量與向量的區別: 數量只有大小,是一個代數量,可以進行代數運算、比較大小;向量有方向,大小,雙重性,不能比較大小。 2(從19世紀末到20世紀初,向量就成為一套優良通性的數學體系,用以研究空間性質。向量的定義以及有關概念 3(向量是既有大小又有方向的量。長度相等、方向相同的向量相等。 4(正因為如此,我們研究的向量是與起點無關的自由向量,即任何向量可以在不改變它的方向和大小的前提下,移到任何位置。 向量的表示方法: 1(幾何表示法:點—射線 有向線段——具有一定方向的線段 有向線段的三要素:起點、方向、長度 記作(注意起訖點) 2(字母表示法:可表示為(印刷時用黑體字) 模的概念:向量的大小——長度稱為向量的模。 記作:|| 模是可以比較大小的 兩個特殊的向量: 1(零向量——長度(模)為0的向量,記作。的方向是任意的。 注意與0的區別 2(單位向量——長度(模)為1個單位長度的向量叫做單位向量。 向量間的關系: 平行向量:方向相同或相反的非零向量叫做平行向量。 記作:∥∥;規定:與任一向量平行 相等向量:長度相等且方向相同的向量叫做相等向量。 記作:=;規定:= 任兩相等的非零向量都可用一有向線段表示,與起點無關。 共線向量:任一組平行向量都可移到同一條直線上 , 所以平行向量也叫共線向量。 三、向量的加法 1.定義:求兩個向量的和的運算,叫做向量的加法。 注意:兩個向量的和仍舊是向量(簡稱和向量) 2.三角形法則:(口訣)「首尾相接」 注意: 1(「向量平移」(自由向量):使前一個向量的終點為後一個向量的起點 2(可以推廣到n個向量連加 3( 4(不共線向量都可以採用這種法則——三角形法則 3.加法的交換律和平行四邊形法則 1(向量加法的平行四邊形法則。2(向量加法的交換律:+=+ 3(向量加法的結合律:(+) +=+ (+) 向量的減法 用「相反向量」定義向量的減法 1(「相反向量」的定義:與a長度相同、方向相反的向量。記作 (a 2(規定:零向量的相反向量仍是零向量。(((a) = a,任一向量與它的相反向量的和是零向量。a + ((a) = 0,如果a、b互為相反向量,則a = (b, b = (a, a + b = 0 3(向量減法的定義:向量a加上的b相反向量,叫做a與b的差。 即:a ( b = a + ((b) 求兩個向量差的運算叫做向量的減法。 用加法的逆運算定義向量的減法: 向量的減法是向量加法的逆運算: 若b + x = a,則x叫做a與b的差,記作a ( b 求作差向量:已知向量a、b,求作向量 作法:在平面內取一點O, 作= a, = b 則= a ( b 即a ( b可以表示為從向量b的終點指向向量a的終點的向量。 注意:1(表示a ( b。強調:差向量「箭頭」指向被減數 2(用「相反向量」定義法作差向量,a ( b = a + ((b) 顯然,此法作圖較繁,但最後作圖可統一。 五、實數與向量的積 實數λ與向量的積,記作:λ 定義:實數λ與向量的積是一個向量,記作:λ 1(|λ|=|λ||| 2(λ>0時λ與方向相同;λ<0時λ與方向相反;λ=0時λ= 運算定律:結合律:λ(μ)=(λμ) ① 第一分配律:(λ+μ)=λ+μ ② 第二分配律:λ(+)=λ+λ ③ 六、向量共線的充要條件(向量共線定理) 若有向量(()、,實數λ,使=λ則由實數與向量積的定義知:與為共線向量 若與共線(()且||:||=μ,則當與同向時=μ 當與反向時=(μ 從而得:向量與非零向量共線的充要條件是:有且只有一個非零實數λ 使=λ 七、平面向量基本定理: 如果,是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量,有且只有一對實數λ1,λ2使=λ1+λ2 注意幾個問題: 1( 、必須不共線,且它是這一平面內所有向量的一組基底 2( 這個定理也叫共面向量定理 3(λ1,λ2是被,,唯一確定的數量 八、平面向量數量積(內積)的定義,a(b = |a||b|cos(, 並規定0與任何向量的數量積為0。( 注意的幾個問題;——兩個向量的數量積與向量同實數積有很大區別 1(兩個向量的數量積是一個實數,不是向量,符號由cos(的符號所決定。 2(兩個向量的數量積稱為內積,寫成a(b;今後要學到兩個向量的外積a×b,而ab是兩個數量的積,書寫時要嚴格區分。 3(在實數中,若a(0,且a(b=0,則b=0;但是在數量積中,若a(0,且a(b=0,不能推出b=0。因為其中cos(有可能為0。這就得性質2。 4(已知實數a、b、c(b(0),則ab=bc ( a=c。但是a(b = b(c ( a = c 如右圖:a(b = |a||b|cos( = |b||OA| b(c = |b||c|cos( = |b||OA| (ab=bc 但a ( c 5(在實數中,有(a(b)c = a(b(c),但是(a(b)c ( a(b(c) 顯然,這是因為左端是與c共線的向量,而右端是與a共線的向量,而一般a與c不共線。 向量的數量積的幾何意義: 數量積a(b等於a的長度與b在a方向上投影|b|cos(的乘積。 兩個向量的數量積的性質: 設a、b為兩個非零向量,e是與b同向的單位向量。 1(e(a = a(e =|a|cos( 2(a(b ( a(b = 0 3(當a與b同向時,a(b = |a||b|;當a與b反向時,a(b = (|a||b|。 特別的a(a = |a|2或 4(cos( = 5(|a(b| ≤ |a||b| 平面向量的運算律 1、交換律:a ( b = b ( a 2、(a)(b =(a(b) = a((b) a + b)(c = a(c + b(c

D. 求高中數學基礎知識提綱

希望能幫到你、、、、、、、、、、、、
高中數學知識點總結
高中數學立體幾何初步知識點總結:
立體幾何初步:①柱、錐、台、球及其簡單組合體等內容是立體幾何的基礎,也是研究空間問題的基本載體,是高考考查的重要方面,在學習中應注意這些幾何體的概念、性質以及對面積、體積公式的理解和運用。②三視圖和直觀圖是認知幾何體的基本內容,在高考中,對這兩個知識點的考查集中在兩個方面,一是考查三視圖與直觀圖的基本知識和基本的視圖能力,二是根據三視圖與直觀圖進行簡單的計算,常以選擇題、填空題的形式出現。③幾何體的表面積和體積,在高考中有所加強,一般以選擇題、填空、簡答等形式出現,難度不大,但是常與其他問題一起考查④平面的基本性質與推理主要包括平面的有關概念,四個公理,等角定理以及異面直線的有關知識,是整個立體幾何的基礎,學習時應加強對有關概念、定理的理解。⑤平行關系和垂直關系是立體幾何中的兩種重要關系,也是解決立體幾何的重要關系,要重點掌握。
高中數學平面解析幾何初步知識點總結:
平面解析幾何初步:①直線與方程是解析幾何的基礎,是高考重點考查的內容,單獨考查多以選擇題、填空題出現;間接考查則以直線與圓、橢圓、雙曲線、拋物線等知識綜合為主,多為中、高難度試題,往往作為把關題出現在高考題目中。直接考查主要考查直線的傾斜角、直線方程,兩直
高中數學集合知識點總結:
作為高中數學的一種基本語言及工具,幾乎為每年高考的必考內容,多以選擇題出現,分值約占總分的3%-5%,多與函數、不等式、數列等知識聯系而命制小型綜合題,根據新課標考試大綱的要求,集合關系與集合運算為考試重點,因此既要牢固掌握集合基本概念與運算,又要加強集合與其他數學知識的聯系,突出集合的工具性,尤其是熟練進行集合的自然語言、圖形語言、符號語言的相互轉化。
線的位置關系,點到直線的距離,對稱問題等,間接考查一定會出現在高考試卷中,主要考查直線與圓錐曲線的綜合問題。②圓的問題主要涉及圓的方程、直線與圓的位置關系、圓與圓的位置關系以及圓的集合性質的討論,難度中等或偏易,多以選擇題、填空題的形式出現,其中熱點為圓的切線問題。③空間直角坐標系是平面直角坐標系在空間的推廣,在解決空間問題中具有重要的作業,空間向量的坐標運算就是在空間直角坐標系下實現的。空間直角坐標系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標運算結合起來運用,也不排除出現考查基礎知識的選擇題和填空題。
高中數學函數概念與基本初等函數ⅰ知識點總結:
函數概念與基本初等函數ⅰ:①函數是高中數學最重要、最基礎的內容,函數的思想方法貫穿於各章的知識中,函數問題在每年的高考中,不但以
高中數學演算法初步知識點總結:
演算法初步:①演算法是新課標增加的內容,以選擇題或填空題的形式考查,應該注意理解演算法的基本概念與特徵,注意演算法的本質是解決問題的一種程序性方法,學會演算法的自然語言。框圖程序設計語言等的相互轉化。②基本演算法語句也是新課標增加的內容,是數學及其應用的重要組成部分,預計高考對本部分的考查可能與代數、幾何中的有關知識結合,以選擇題、填空題的形式考查對幾種基本演算法語句的理解和應用。
選擇題、填空題的形式出現,而且幾乎每年都有一道解答題,考查內容重點涉及函數的概念、圖像、性質等各個方面,難度在低、中、高檔方面均有體現。②函數和方程為新課標新增添內容,要求結合二次函數的圖像,了解函數的零點與方程根的聯系,能判斷一元二次方程的根的存在性及根的個數;根據具體函數的圖像,能夠用二分法求相應方程的近似解,本部分知識蘊含著數形結合的思想、函數與方程的思想,在學習時注意體會。③學習數學是為了應用數學,指數函數、對數函數以及冪函數等都是重要的基本初等函數,是函數概念的具體體現於綜合應用,和其他函數一樣,對於它們的定義、圖像以及性質等是高考考查的重點,與其他函數、方程、不等式以及數列相融合的知識也是考查的熱點。
高中數學統計知識點總結:
統計:①隨機抽樣在高考中主要是選擇題或填空題,考查學生對各種抽樣方法的理解,一次學習時應加強對這三種抽樣飛的理解,搞清三種抽樣法的區別和聯系。②樣本估計法也是以小題為主,考查排列分布直方圖、平均數、標准差等的概念的理解和應用,學習時應結合實例理解樣本估計總體的思想,加深對;頻率分布直方圖的理解與應用,能從數據中抽取基本的數字特徵,並記准相應的公式。③變數的相關性的重點是變數間的線性相關及兩個變數的線性相關、最小二法思想、回歸方程的建立以及對回歸直線與觀測數據的理解。
高中數學概率知識點總結:
概率:①隨機事件的概率為近幾年新增添的內容,高考中主要以選擇題、填空題的形式出現,與其他知識綜合考查其應用,學習時,應通過基礎知識的學習理解其基本概念、基本原理,然後在此基礎上解決生活中的有關問題,還要理解隨機事件發生的不確定性和頻率的穩定性等知識。②古典概型是概率中最基本的一個概率模型,高考中,主要是利用古典概型的概率公式解決一些古典概型的應用題,考查形式可以是選擇題、填空題、解答題。③幾何概型是新增添內容,高考可能會有所側重,主要以選擇題、填空題出現,應注意基本概念的理解。
高中數學基本初等函數ⅱ(三角函數)知識點總結:

高中數學平面向量 知識點總結:
平面向量:在近幾年的高考中,平面向量每年都考,而且有加強的趨勢,在學習中應抓住兩個方面:一是向量的概念、性質、運算;二是應用向量解決距離、夾角、垂直、模的問題。學會運用向量處理三角函數、解析幾何、平面幾何、實際應用等綜合問題,以發展運算求解能力和解析、解決
高中數學三角恆等變形知識點總結:
三角恆等變形:①兩角和與差的三角函數公式是歷年高考的重要內容,而且有進一步加強的趨勢。因此公式應用講究一個活字,深刻理解各個公式之間的聯系,掌握公式應用的通性通法是學習的關鍵。②三角恆等變形中的三角函數求值、化簡及恆等證明是高考是熱點,需要掌握的公式有兩角和差、倍角的三角函數公式。學習的重點是掌握變換的基本思想方法,不是盲目地訓練繁難 偏題、怪題,應注重通性、通法的運用。
實際問題的能力。
本初等函數ⅱ(三角函數):①三角函數是中學中重要的初等函數之一,它的定義和性質有十分明顯的特徵和規律性,它和代數、幾何有著密切的聯系,是研究其他部分知識的重要工具,在實際問題中也有重要的應用,是高考對基礎知識和基本技能考查的重要內容之一。②在高考中主要有四類問題:一是與三角函數單調性有關的問題,二是與三角函數圖像有關的問題,三是應用同角變換和誘導公式,求三角函數及化簡和等式證明的問題,四是與周期和奇偶性有關的問題。③高考中多以選擇題、填空題形式出現,但也不排除在解答題中單獨出現,其難度為中、低檔。
高中數學解三角形知識點總結:
解三角形:在高考試題中,有關解三角形的問題主要考查正弦定理、餘弦定理及利用三角公式進行恆等變形的能力,以化簡、求值或判斷三角形的形狀為主,也與其他知識結合,考查解決綜合問題的能力。有關解三角形的題型主要是選擇題、填空題、解答題等,一般為簡單題或中檔題。
高中數學數列知識點總結:
數列:數列是高中數學的重要內容,是中學數學聯系實際的主要渠道之一,數列與數、式、函數、方程、不等式、三角函數、解析幾何的關系十分密切。數列中的遞推思想、函數思想、分類討論思想以及數列求和、求通向公式的各種方法和技巧在中學數學中有著十分重要的地位,因此數列知識可以命綜合性強的試題。每年高考中與數列有關的試題約佔全卷的10%-15%,基因數列內容的客觀題,也有數列與相關內容結合的綜合題與實際應用題。
高中數學不等式知識點總結:
不等式:①不等關系是客觀世界中量與量之間的一種主要關系,而不等式則是反映這種關系的基本形式,一直是高考考查的重點內容,尤其以實際問題、函數為背景的綜合題較多。不等式的定義域性質是不等式的基礎,許多不等式的定理、公式都是在此基礎上推理、拓展而成的,因此學校時要抓住基本概念和性質,熟練掌握性質的變形及其應用,不斷提升思維的深度和廣度,才能在解決與不等式有關的綜合題上有備無患、得心應手。②一元二次不等式是歷年考查的重點,因為其與一元二次函數、一元二次方程等聯系密切,內容交融,經常考查含參數的不等式的求解、恆成立問題、一元二次不等式的實際應用、綜合推理題等。因此學習時應該通過圖像了解一元二次不等式與相應的二次函數、二次方程的聯系。③線性規劃問題是眾多知識的交匯點,在實際生活、實際生產中的應用十分廣泛,而且在線性規劃問題的解決中,需要用到多種數學思想方法。所以線性規劃也是高考命題的熱點內容。高考中主要考查平面區域的表示。線性目標函數的最值等問題,主要以選擇題、填空題的形式出現,有時也以解答題的形式出現。

E. 高中數學知識點總結。。。網址

高中數學知識點總結 http://..com/search?lm=0&rn=10&pn=0&fr=search&ie=gbk&word=%B8%DF%D6%D0%CA%FD%D1%A7%D6%AA%CA%B6%B5%E3%D7%DC%BD%E1%CD%F8%D6%B7 1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?

注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質:

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?

10. 如何求復合函數的定義域?

義域是_____________。

11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?

12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?

∴……)
15. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。

由圖象記性質! (注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什麼?

20. 你在基本運算上常出現錯誤嗎?

21. 如何解抽象函數問題?
(賦值法、結構變換法)

22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:

23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24. 熟記三角函數的定義,單位圓中三角函數線的定義

25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?

(x,y)作圖象。

27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。

28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?

29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:

圖象?

30. 熟練掌握同角三角函數關系和誘導公式了嗎?

「奇」、「偶」指k取奇、偶數。

A. 正值或負值 B. 負值 C. 非負值 D. 正值

31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:

應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:

(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。

32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?

(應用:已知兩邊一夾角求第三邊;已知三邊求角。)

33. 用反三角函數表示角時要注意角的范圍。

34. 不等式的性質有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下結論:

36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。

(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始

39. 解含有參數的不等式要注意對字母參數的討論

40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)

證明:

(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)

43. 等差數列的定義與性質

0的二次函數)

項,即:

44. 等比數列的定義與性質

46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法

解:

[練習]

(2)疊乘法

解:

(3)等差型遞推公式

[練習]

(4)等比型遞推公式

[練習]

(5)倒數法

47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

解:

[練習]

(2)錯位相減法:

(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

[練習]

48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:

△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足

p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不

50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績

則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:

(2)中間兩個分數相等

相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理

性質:

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第

表示)

52. 你對隨機事件之間的關系熟悉嗎?

的和(並)。

(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即

(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生

如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」

(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。

在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。
(9)向量的坐標表示

表示。

57. 平面向量的數量積

數量積的幾何意義:

(2)數量積的運演算法則

[練習]

答案:

答案:2

答案:
58. 線段的定比分點

※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:

線面平行的判定:

線面平行的性質:

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。

(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。

62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63. 球有哪些性質?

(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

積為( )

答案:A
64. 熟記下列公式了嗎?

(2)直線方程:

65. 如何判斷兩直線平行、垂直?

66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?

68. 分清圓錐曲線的定義

70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71. 會用定義求圓錐曲線的焦半徑嗎?
如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。

答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。

75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

F. 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

G. 高中數學 平面向量 公式大全

一、平面向量公式:設a=(x,y),b=(x',y')。

1、向量的加法

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0。0的反向量為0

AB-AC=CB。即「共同起點,指向被減」

a=(x,y)b=(x',y')則a-b=(x-x',y-y')

二、平面向量,垂直,平行平移等的關系:

三點共線定理

若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線

三角形重心判斷式

在△ABC中,若GA+GB+GC=O,則G為△ABC的重心

向量共線的重要條件

若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。

a//b的重要條件是xy'-x'y=0。

零向量0平行於任何向量。

向量垂直的充要條件

a⊥b的充要條件是a•b=0。

a⊥b的充要條件是xx'+yy'=0。

零向量0垂直於任何向量。

比較:

共線向量與平行向量關系

由於任何一組平行向量都可移到同一直線上,故平行向量也叫做共線向量。

平行向量與相等向量的關系

相等的向量一定平行,但是平行的向量並不一定相等。兩個向量相等並不一定這兩個向量一定要重合。只用這兩個向量長度相等且方向相同即可。其中「方向相同」就包含著向量平行的含義。

H. 總結高中數學知識點(人教版)

.集合、簡易邏輯
理解集合、子集、補集、交集、並集的概念;

了解空集和全集的意義;

了解屬於、包含、相等關系的意義;

掌握有關的術語和符號,並會用它們正確表示一些簡單的集合。

理解邏輯聯結詞"或"、"且"、"非"的含義;

理解四種命題及其相互關系;掌握充要條件的意義。

2.函數

了解映射的概念,在此基礎上加深對函數概念的理解。

了解函數的單調性的概念,掌握判斷一些簡單函數的單調性的方法。

了解反函數的概念及互為反函數的函數圖象間的關系,會求一些簡單函數的反函數。

理解分數指數的概念,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質。

理解對數的概念,掌握對數的運算性質;掌握對數函數的概念、圖象和性質。

能夠運用函數的性質、指數函數、對數函數的性質解決某些簡單的實際問題。

3.不等式

理解不等式的性質及其證明。

掌握兩個(不擴展到三個)正數的算術平均數不小於它們的幾何平均數的定理,並會簡單的應用。

掌握分析法、綜合法、比較法證明簡單的不等式。

掌握二次不等式,簡單的絕對值不等式和簡單的分式不等式的解法。

理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。

4.三角函數(46課時)

理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。

掌握任意角的正弦、餘弦、正切的定義,

並會利用單位圓中的三角函數線表示正弦、餘弦和正切。

了解任意角的餘切、正割、餘割的定義;

掌握同角三角函數的基本關系式:

掌握正弦、餘弦的誘導公式。

掌握兩角和與兩角差的正弦、餘弦、正切公式;

掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯系,從而培養邏輯推理能力。

能正確運用三角公式,進行簡單三角函數式的化簡、求值和恆等式證明(包括引出積化和差、和差化積、半形公式,但不要求記憶)。

了解周期函數與最小正周期的意義;

了解奇偶函數的意義;並通過它們的圖象理解正弦函數、餘弦函數、正切函數的性質;以及簡化這些函數圖象的繪制過程;

會用"五點法"畫正弦函數、餘弦函數和函數y=Asin(ωx+φ)的簡圖,理解A、ω、φ的物理意義。

會由已知三角函數值求角,並會用符號 arcsin x、arccos x、arctan x表示。

掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。

5.平面向量

理解向量的概念,掌握向量的幾何表示,

了解共線向量的概念。

掌握向量的加法與減法。

掌握實數與向量的積,理解兩個向量共線的充要條件。

了解平面向量的基本定理,

理解平面向量的坐標的概念,

掌握平面向量的坐標運算。

掌握平面向量的數量積及其幾何意義,

了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。

掌握平面兩點間的距離公式,

掌握線段的定比分點和中點坐標公式,並且能熟練運用;

掌握平移公式。

6.數列

理解數列的概念,

了解數列通項公式的意義;

了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。

理解等差數列的概念,

掌握等差數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。

理解等比數列的概念

掌握等比數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。

7.直線和圓的方程

理解直線的傾斜角和斜率的概念,

掌握過兩點的直線的斜率公式,

掌握直線方程的點斜式、兩點式和直線方程的一般式,並能根據條件熟練地求出直線的方程。

掌握兩條直線平行與垂直的條件,

掌握兩條直線所成的角和點到直線的距離公式;

能夠根據直線的方程判斷兩條直線的位置關系。

會用二元一次不等式表示平面區域。

了解簡單的線性規劃問題,了解線性規劃的意義,並會簡單應用。

掌握圓的標准方程和一般方程,

了解參數方程的概念,理解圓的參數方程。

8.圓錐曲線方程

掌握橢圓的定義、標准方程和橢圓的簡單幾何性質;

理解橢圓的參數方程。

掌握雙曲線的定義、標准方程和雙曲線的簡單幾何性質。

掌握拋物線的定義、標准方程和拋物線的簡單幾何性質。

9.直線、平面、簡單幾何體

掌握平面的基本性質,會用斜二測的畫法畫水平放置的平面圖形的直觀圖;

能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據圖形想像它們的位置關系。

掌握兩條直線平行與垂直的判定定理和性質定理;

掌握兩條直線所成的角和距離的概念(對於異面直線的距離,只要求會利用給出的公垂線計算距離)。

掌握直線和平面平行的判定定理和性質定理;

掌握直線和平面垂直的判定定理和性質定理;

掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念;

了解三垂線定理及其逆定理。

掌握兩個平面平行的判定定理和性質定理;

掌握二面角、二面角的平面角、兩個平行平面間的距離的概念;

掌握兩個平面垂直的判定定理和性質定理。

進一步熟悉反證法,會用反證法證明簡單的問題。

了解多面體的概念,了解凸多面體的概念。

了解稜柱的概念,掌握稜柱的性質,會畫直稜柱的直觀圖。

了解棱錐的概念,掌握正棱錐的性質,會畫正棱錐的直觀圖。

了解正多面體的概念,了解多面體的歐拉公式。

了解球的概念,掌握球的性質,掌握球的表面積和體積公式。

10.排列、組合、二項式定理

掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的應用問題。

理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的應用問題。

理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的應用問題。

掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。

11.概率

了解隨機事件的統計規律性和隨機事件概率的意義。

了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

了解互斥事件的意義,會用互斥事件的概率加法公式計算一些事件的概率。

了解相互獨立事件的意義,會用相互獨立事件的概率乘法公式計算一些事件的概率。

會計算事件在 n 次獨立重復試驗中恰好發生 k 次的概率。

選修Ⅰ

1.統計

了解隨機抽樣、分層抽樣的意義,會用它們對簡單實際問題進行抽樣;

會用樣本頻率分布估計總體分布,

會利用樣本估計總體期望值和方差,體會如何從數據中提取信息並作出統計推斷。

2.導數

理解導數是平均變化率的極限;理解導數的幾何意義。

掌握函數 的導數公式,會求多項式函數的導數。

理解極大值、極小值、最大值、最小值的概念,

會用導數求多項式函數的單調區間、極大值、極小值及閉區間上的最大值和最小值。

選修Ⅱ

1.概率與統計

了解離散型隨機變數的意義,

會求出某些簡單的離散型隨機變數的分布列。

了解離散型隨機變數的期望值、方差的意義,會根據離散型隨機變數的分布列求出期望值、方差。

會用隨機抽樣、系統抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。

會用樣本頻率分布估計總體分布。

了解正態分布的意義及主要性質。

了解線性回歸的方法和簡單應用。

2. 極限

理解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

從數列和函數的變化趨勢了解數列極限和函數極限的概念。

掌握極限的四則運演算法則;會求某些數列與函數的極限。

了解連續的意義,藉助幾何直觀理解閉區間上連續函數有最大值和最小值的性質。

3.導數

了解導數概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);

掌握函數在一點處的導數的定義和導數的幾何意義;

理解導函數的概念。

熟記基本導數公式(c,xm(m為有理數), sin x, cos x, ex, ax, ln x,logax的導數);

掌握兩個函數和、差、積、商的求導法則;

了解復合函數的求導法則,會求某些簡單函數的導數。

會從幾何直觀了解可導函數的單調性與其導數的關系;了解可導函數在某點取得極值的必要條件和充分條件(導數在極值點兩側異號);會求一些實際問題(一般指單峰函數)的最大值和最小值。

4.數系的擴充--復數

理解復數的有關概念;

掌握復數的代數表示與幾何意義。

掌握復數代數形式的運演算法則,能進行復數代數形式的加、減、乘、除運算。

I. 誰能幫我總結高中數學會考知識點

2009年高中數學會考復習必背知識點
第一章 集合與簡易邏輯 1、含n個元素的集合的所有子集有 個
第二章 函數 1、求 的反函數:解出 , 互換,寫出 的定義域;
2、對數:①:負數和零沒有對數,②、1的對數等於0: ,③、底的對數等於1: ,
④、積的對數: , 商的對數: ,
冪的對數: ; ,
第三章 數列
1、數列的前n項和: ; 數列前n項和與通項的關系:
2、等差數列 :(1)、定義:等差數列從第2項起,每一項與它的前一項的差等於同一個常數;
(2)、通項公式: (其中首項是 ,公差是 ;)
(3)、前n項和:1. (整理後是關於n的沒有常數項的二次函數)
(4)、等差中項: 是 與 的等差中項: 或 ,三個數成等差常設:a-d,a,a+d
3、等比數列:(1)、定義:等比數列從第2項起,每一項與它的前一項的比等於同一個常數,( )。
(2)、通項公式: (其中:首項是 ,公比是 )
(3)、前n項和:
(4)、等比中項: 是 與 的等比中項: ,即 (或 ,等比中項有兩個)
第四章 三角函數
1、弧度制:(1)、 弧度,1弧度 ;弧長公式: ( 是角的弧度數)
2、三角函數 (1)、定義:
3、特殊角的三角函數值
的角度

的弧度





4、同角三角函數基本關系式:
5、誘導公式:(奇變偶不變,符號看象限) 正弦上為正;餘弦右為正;正切一三為正
公式二: 公式三: 公式四: 公式五:

6、兩角和與差的正弦、餘弦、正切
: :
: :
: :
7、輔助角公式:

8、二倍角公式:(1)、 : )




(2)、降次公式:(多用於研究性質)

9、三角函數:
函數 定義域 值域 周期性 奇偶性 遞增區間 遞減區間

[-1,1]
奇函數

[-1,1]
偶函數

函數 定義域 值域 振幅 周期 頻率 相位 初相 圖象

[-A,A] A

五點法
10、解三角形:(1)、三角形的面積公式:
(2)正弦定理:
(3)、餘弦定理:
求角:
第五章、平面向量 1、坐標運算:設 ,則
數與向量的積:λ ,數量積:
(2)、設A、B兩點的坐標分別為(x1,y1),(x2,y2),則 .(終點減起點)
;向量 的模| |: ;
(3)、平面向量的數量積: , 注意: , ,
(4)、向量 的夾角 ,則 ,
2、重要結論:(1)、兩個向量平行: ,
(2)、兩個非零向量垂直 ,
(3)、P分有向線段 的:設P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,
則定比分點坐標公式 , 中點坐標公式
第六章:不等式
1、 均值不等式:(1)、 ( )
(2)、a>0,b>0; 或 一正、二定、三相等
2、解指數、對數不等式的方法:同底法,同時對數的真數大於0;
第七章:直線和圓的方程
1、斜 率: , ;直線上兩點 ,則斜率為
2、直線方程:(1)、點斜式: ;(2)、斜截式: ;
(3)、一般式: (A、B不同時為0) 斜率 , 軸截距為
3、兩直線的位置關系(1)、平行: 時 , ;
垂直: ;
(2)、到角范圍: 到角公式 : 都存在,
夾角范圍: 夾角公式: 都存在,
(3)、點到直線的距離公式 (直線方程必須化為一般式)
6、圓的方程:(1)、圓的標准方程 ,圓心為 ,半徑為
(2)圓的一般方程 (配方: )
時,表示一個以 為圓心,半徑為 的圓;
第八章:圓錐曲線 1、橢圓標准方程: ,
半焦距: , 離心率的范圍: ,准線方程: ,參數方程:
2、雙曲線標准方程: ,半焦距: ,離心率的范圍:
准線方程: ,漸近線方程用 求得: ,等軸雙曲線離心率
3、拋物線: 是焦點到准線的距離 ,離心率:
:准線方程 焦點坐標 ; :准線方程 焦點坐標
:准線方程 焦點坐標 ; :准線方程 焦點坐標
第九章 直線 平面 簡單的幾何體
1、長方體的對角線長 ;正方體的對角線長
2、兩點的球面距離求法:球心角的弧度數乘以球半徑,即 ;
3、球的體積公式: ,球的表面積公式:
4、柱體 ,錐體 ,錐體截面積比:
第十章 排列 組合 二項式定理
1、排列:(1)、排列數公式: = = .( , ∈N*,且 ).0!=1
(3)、全排列:n個不同元素全部取出的一個排列; ;
2、組合:
(1)、組合數公式: = = = ( , ∈N*,且 ); ;
(3)組合數的兩個性質: = ; + = ;
3、二項式定理 :(1)、定理: ;
(2)、二項展開式的通項公式(第r +1項):
各二項式系數和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n (表示含n個元素的集合的所有子集的個數)。
奇數項二項式系數的和=偶數項二項式系數的和:Cn0+Cn2+Cn4+ Cn6+…=Cn1+Cn3+Cn5+ Cn7+…=2n -1
第十一章:概率:
1、概率(范圍):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)
2、等可能性事件的概率: .
3、互斥事件有一個發生的概率:A,B互斥: P(A+B)=P(A)+P(B);A、B對立:P(A)+ P(B)=1
4、獨立事件同時發生的概率:獨立事件A,B同時發生的概率:P(A•B)= P(A)•P(B).
n次獨立重復試驗中某事件恰好發生k次的概率