當前位置:首頁 » 基礎知識 » 怎樣背數學單元知識清單
擴展閱讀
鋼結構基礎短柱怎麼計算 2025-01-12 17:15:31
兒童攝影套如何退款 2025-01-12 17:04:05

怎樣背數學單元知識清單

發布時間: 2022-08-02 17:48:52

⑴ 如何有效地復習整理數學知識

數學的邏輯性很強,知識往往分散在不同階段,學生對這些知識理解容易割裂。在階段學習的基礎上需對各領域內容進行系統整理與復習。整理與復習是要把平時相對獨立進行教學的知識,其中特別重要的是把帶有規律性的知識,以再現、整理、歸納等方法串聯起來,進而加深學生對知識的理解、溝通。它既不同於新授課,更不同於練習課。其基本任務就是整理知識,使之系統化、清晰化,並具有拓展性。
它的重要特點就是在系統原理的指導下,對所學知識進行系統的整理,使之形成一個較完整的知識體系,這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通,做到梳理——訓練——拓展,有序發展,真正提高復習的效果。
如何進行有效地復習與整理呢?
一、梳理歸納,溝通聯系,強化基礎
基礎知識與基本技能是數學學習的基礎,創新能力的高樓必須建立在扎實的雙基基礎之上,只有具備扎實的數學基礎,學生才會出現創新的可能。教師要引導學生進行回顧與整理,使學生在平時學習的基礎上溝通各部分之間的聯系。在回顧與整理時,應以雙基為基礎,充分發揮學生的主體作用,引導學生自主整理知識,形成知識網路,體驗數學的系統性。
但是在這樣的學習過程中,必須注意兩個問題:一是由於小學生受到知識結構和能力水平的限制,學生所要整理、溝通的知識內容的切人點一定要小,做到小而精,提出的學習要求要明確,以便學生能更好地進行整理;二是在學生整理時,教師應適當給予一些幫助,學生的整理盡管是不完整或粗糙的,教師也應給予充分地評價,並結合學生的整理,取其精華概括出較合理的知識網路圖。
在平時的學習中,有些學生可能對基本概念的理解不夠重視,有些學生則會在理解法則上有些模糊。對於易混淆的知識點,教師適時引導學生結合具體的事例進行理解,讓學生在理解的基礎上進行記憶;同時對學生已能熟練記憶的基礎知識,再要求學生加強理解,弄清知識間的聯系,分清類似知識點的區別,從而更好地掌握基礎知識。如果學生對鈍角的概念只是機械記憶,只記概念「大於90度,小於180度的角是鈍角」,沒有準確理解鈍角概念的內涵與外延,會認為「鈍角大於90度」是正確的。對於商不變規律「被除數和除同時乘或除以相同的數(零除外),商不變」。學生往往會把0除外忽視,還會影響分數的基本性質的學習。
二、合理訓練,提高能力,發展思維
在回顧與整理的基礎上,需要通過合理的訓練以鞏固學生所學知識。只有通過合理的訓練、反饋,才能暴露出學生在學習中存在的問題,同時訓練可以鍛煉學生如何應用已有知識解決具體的數學問題的能力。學生在回顧與整理中具備了一定的數學基礎知識與技能,那麼在鞏固與應用環節的訓練中,首先要培養學生的應用意識,讓他們學會合理地應用已有知識和常見的解題策略來解決數學問題。鞏固與應用中的訓練應注重訓練量的合理,這就要求教師在訓練中精選習題,注重習題的創新性,同時適當加強訓練題的趣味性和生活味,以激發學生的興趣,調節學生心理。
從教學實踐來看,有時一些具有一定思維難度的數學題,也會激起學生的探究慾望。激發學生的學習興趣與熱情是平常教學,更是復習時很重要的教學手段:即通過創設情境激發學生學習的興奮點,讓學生在復習時也有新鮮感,從而以一種積極的心態投人到復習中,避免以往復習課那種沉悶的氣氛及面面俱到的「炒冷飯」般的復習方式。
數學是思維的體操,思維活動是數學學科的特徵,任何數學教學活動都不能缺少思維活動,復習課同樣不例外。因此在復習的全過程中,教師必須以培養學生的思維能力為目標,注重學生思維的發展與提高,在發展與提高學生思維能力的過程中,教師應注重培養學生的解題的靈活性與創新意識。培養學生解題的靈活性,可通過一題多解進行,例如在解決「5米長的鐵絲重250克,2500克的一捆鐵絲有多長?」時,學生可能會先求出每米鐵絲的重量再求這捆鐵絲的重量或先求出每克鐵絲的長度再求這捆鐵絲的長或根據重量比與長度之比求出鐵絲的長度。在這種一題多解的訓練中,讓學生體驗解題的靈活性,發展他們的思維能力。同時,一題多解的訓練,還可培養學生在解題過程中,當某種思路受阻時,可以換一種思路來解決問題。此外教師要在課堂上留給學生思考的時間和空間,鼓勵他們發揮自己的創造力,讓他們的想像得到充分的展現。讓學生提數學問題,解決生活實際的問題。
三、培養良好的學習習慣,提高學習效益
在復習過程中,要注意培養學生良好的學習習慣。良好的學習習慣不僅能提高學習,而且一生受益。
總之,整理和復習課的形式要多樣化,運用多種方法和策略,揭示數學知識之間的聯系與區別,並幫助學生掌握相關規律,認識事物的本質,達到整理有序和復習有效的目的,使學生在獲得對數學理解的同時,思維能力、個性品質、情感態度等方面都得到發展。

⑵ 二年級數學知識點有哪些

二年級數學必背知識點有如下:

1、被除數÷ 除數 = 商…….余數。

2、最小的一位數是1,最大的一位數是9;最小的兩位數是10,最大的兩位數是99;最小的三位數是100,最大的三位數是999;最小的四位數是1000,最大的四位數是9999;最大的五位數是10000。

3、長度單位轉換時,大單位轉小單位,數字增大(添「0」),小單位轉大單位,數字減小(去「0」)。

4、結束時間-經過時間=開始時間。

5、減法時:要先算(分減分),再算(時減時),當「分」不夠減時,向(時)借1當60分,60分與原來的「分」合在一起再減。

⑶ 怎樣才能背會數學的概念,雖然理解了,但卻背不會,總是忘記,非常苦惱,希望各位朋友幫幫我!

數學概念其實重在理解,在實踐的過程中積累經驗。
1.老師平時布置下來的家庭作業一定要認真完成,將理解不到位的知識點全部吃透;
2.平時做題時,要把各種題型對應到各知識點上,遇到一個知識點,就要記住它出現的特點,並將之融會貫通;
3.千萬不要去試著背數學概念,應當嘗試去預習和復習數學概念。預習自然不必說,因為預習的范圍不外乎基本概念,但是復習的時候,也應該以基本概念為主,這樣不但做題思路清晰,而且所有知識點都得到了總結和串聯,會使得知識更加牢固。

以上就是我的學習方法,但願能對樓主起到一定的幫助作用。

⑷ 數學五年級上冊人教版知識點歸納 15條

小學五年級數學上冊復習知識點歸納總結
第一單元小數乘法
1.小數乘法計算方法:按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
2、一個數(0除外)乘大於1的數,積比原來的數大; 一個數(0除外)乘小於1的數,積比原來的數小。
3、求近似數的方法一般有三種:
⑴四捨五入法 (常用) ; ⑵進一法; ⑶去尾法
4、計算錢數,保留兩位小數,表示精確到分。保留一位小數,表示精確到角。
5、小數四則運算順序跟整數四則運算順序是一樣的。
6、運算定律和性質:
加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
乘法:乘法交換律:a×b=b×a
乘法結合律:三個數相乘,先把前兩個數相乘,再和最後一個數相乘,或先把後兩個數相乘,再和第一個數相乘,積不變. (a×b)×c=a×(b×c)
乘法分配律:兩個數的和(或者差)同一個數相乘,可以先把這兩個數(或者被減數與減數)分別同這個數相乘,再相加(或者再相減)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
減法性質:從一個數里連續減去兩個數,我們可以減去兩個減數的和,或者交換兩個減數的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性質:從一個數里連續除數兩個數,我們可以除以兩個除數的積,或者交換兩個除數的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括弧: 括弧前是加號的,去掉括弧後,括弧內的符號不變號;括弧前是減號的,去掉括弧後,括弧內的符號要變號。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二單元小數除法
9、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數(把小數點向右移動相同的位數),使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:向右移動小數點時,如果被除數的位數不夠,在被除數的末尾用0補足。
12、除法中的變化規律:①商不變性質:被除數和除數同時乘或除以同一個數(0除外),商不變。②除數不變,被除數乘或除以幾,商隨著乘或除以幾。③被除數不變,除數乘或除以幾,商就除以或乘幾。④被除數大於除數,商就大於1;被除數小於除數,商就小於1。⑤一個數除以大於1的數,商就小於被除數;一個數除以小於1的數,商就大於被除數。⑥積不變性質:一個因數乘一個數,另一個除以同一個數(0除外),積不變。⑦一個因數不變,另一個數乘幾,積就乘幾。⑧一個因數不變,另一個因數除以幾,積就除以幾。
13、一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 X
一個循環小數的小數部分,依次不斷重復出現的數字。(如6.321321…的循環節是321,簡便記法為6.321;如0.33…的循環節是3,簡便記法為0.3。)循環小數是無限小數,無限小數不一定是循環小數。
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。無限小數分為無限循環小數和無限不循環小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面,最少看到一個面。圓柱體從上面看到的形狀是圓形,從其他方向看到的是長形或正方形。球體無論從哪個角度看,看到的形狀都是圓形。
第四單元簡易方程
16、在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫。加號、減號、除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a•a或a ,a 讀作a的平方 2a表示a+a
(1a=a這里的「1」我們不寫)
18、方程:含有未知數的等式稱為方程(★方程必須滿足的條件:必須是等式 必須有未知數,兩者缺一不可)。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。
19、解方程原理:天平平衡
等式性質一:方程兩邊同時加上或減去同一個數,左右兩邊仍然相等。等式性質二:方程兩邊同時乘或除以同一個不為0數,左右兩邊仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的檢驗過程:方程左邊 = 方程右邊
23、方程的解是一個數; 解方程式是一個計算過程。 所以,X=…是方程的解。
常見的等量關系:①路程=速度×時間
②工作總量=工作效率×工作時間
③總價=單價 × 數量
第五單元多邊形的面積
23、長方形周長=(長+寬)×2 字母公式:C=(a+b)×2
長方形面積=長×寬 字母公式:S=ab
正方形周長=邊長×4 字母公式:C=4a
正方形面積=邊長×邊長 字母公式:S=a2
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 字母公式: S=ah÷2
(三角形的底=面積×2÷高; 三角形的高=面積×2÷底)
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面積×2÷高-下底,下底=面積×2÷高-上底;
高=面積×2÷(上底+下底) )
25、三角形面積公式推導: 平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底;長方形的寬相當於平行四邊形的高;因為長方形面積=長×寬,所以平行四邊形面積=底×高,長方形的面積等於平行四邊形的面積。 平行四邊形的底相當於三角形的底;平行四邊形的高相當於三角形的高;平行四邊形的面積等於等底等高三角形面積的2倍。
27兩個完全一樣的梯形可以拼成一個平行四邊形。
平行四邊形的底相當於梯形的上下底之和;平行四邊形的高相當於梯形的高;平行四邊形面積等於梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區)
0 5 4 0 0 1
前3位表示郵區, 前4位表示縣(市),最後2位表示投遞局
35、身份證18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台縣 19780301是出生日期 001是順序碼 9校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。

⑸ 高中的數學知識點怎麼樣才能記住啊

高中數學知識點記憶方法與技巧 1.口訣記憶法 高中數學中,有些方法如果能編成順口溜或歌訣,可以幫助記憶。例如, 根據一元二次不等式 ax2+bx+c>0(a>0

⑹ 最新最全人教版小學四年級數學下冊知識點總結

來上新啦,2021人教版的:

四年級下冊數學復習資料全冊1-8單元知識點歸納

第一單元 四則運算

1.加、減的意義和各部分間的關系:

(1)把兩個數合並成一個數的運算,叫做加法。

(2)相加的兩個數叫做加數。加得的數叫做和。

(3)已知兩個數的和與其中的一個加數,求另一個加數的運算,叫做減法。

(4)在減法中,已知的和叫做被減數……。減法是加法的逆運算。

(5)加法各部分間的關系:和=加數+加數加數=和-另一個加數

(6)減法各部分間的關系:差=被減數-減數

減數=被減數-差

被減數=減數+差

2.乘、除法的意義和各部分間的關系

(1)求幾個相同加數的和和的簡便運算,叫做乘法。

(2)相乘的兩個數叫做因數。乘得的數叫做積。

(3)已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。

(4)在除法中,已知的積叫做被除數……。除法是乘法的逆運算。

(5)乘法各部分間的關系:

積=因數×因數

因數=積÷另一個因數

(6)除法各部分間的關系:

商=被除數÷除數

除數=被除數÷商

被除數=商×除數

(7)有餘數的除法,

被除數=商×除數+余數

3.加法、減法、乘法、除法統稱為四則運算

4.四則混和運算的順序

(1)在沒有括弧的算式里,如果只有加、減法,或者只有乘、除法,都要按(從左往右)的順序計算;

(2)在沒有括弧的算式里,如果既有乘、除法,又有加、減法,要先算(乘、除法),後算(加、減法);(先乘除,後加減)

(3)在有括弧的算式里,要先算括弧裡面的,後算括弧外面的。

5.有關 0 的計算

①一個數和0相加,結果還得原數:a+0=a 0+a=a

②一個數減去0,結果還得這個數:a-0=a

③一個數減去它自己,結果得零:a-a=0

④一個數和0相乘,結果得0:a×0=0 ;0×a=0

⑤0除以一個非0的數,結果得0:0÷a=0;

⑥0不能做除數:a÷0=(無意義)

6.租船問題。解答租船問題的方法:先假設、再調整。

第二單元 觀察物體二

1.正確辨認從上面、前面、左面觀察到物體的形狀。

2.觀察物體有訣竅,先數看到幾個面,再看它的排列法,畫圖形時要注意,只分上下畫數量。

3.從不同位置觀察同一個物體,所看到的圖形有可能一樣,也有可能不一樣。

4.從同一個位置觀察不同的物體,所看到的圖形有可能一樣,也有可能不一樣。

5.從不同的位置觀察,才能更全面地認識一個物體。

第三單元 運算定律

……

更多詳細內容請見網路文庫:2021人教版小學四年級下冊數學全冊1-8單元知識點歸納

整理不易,如有幫助,請予採納。

⑺ 高中必背知識點數學

教版高中數學必背知識點

1.課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、演算法、概率、統計等內容。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布

⑿導數:導數的概念、求導、導數的應用

⒀復數:復數的概念與運算

⑻ 最新人教版四年級下冊數學知識點總結

這里有最新2021人教版的:

四年級下冊數學復習資料全冊1-8單元知識點歸納


第一單元 四則運算

1.加、減的意義和各部分間的關系:

(1)把兩個數合並成一個數的運算,叫做加法。

(2)相加的兩個數叫做加數。加得的數叫做和。

(3)已知兩個數的和與其中的一個加數,求另一個加數的運算,叫做減法。

(4)在減法中,已知的和叫做被減數……。減法是加法的逆運算。

(5)加法各部分間的關系:和=加數+加數加數=和-另一個加數

(6)減法各部分間的關系:差=被減數-減數

減數=被減數-差

被減數=減數+差

2.乘、除法的意義和各部分間的關系

(1)求幾個相同加數的和和的簡便運算,叫做乘法。

(2)相乘的兩個數叫做因數。乘得的數叫做積。

(3)已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。

(4)在除法中,已知的積叫做被除數……。除法是乘法的逆運算。

(5)乘法各部分間的關系:

積=因數×因數

因數=積÷另一個因數

(6)除法各部分間的關系:

商=被除數÷除數

除數=被除數÷商

被除數=商×除數

(7)有餘數的除法,

被除數=商×除數+余數

3.加法、減法、乘法、除法統稱為四則運算

4.四則混和運算的順序

(1)在沒有括弧的算式里,如果只有加、減法,或者只有乘、除法,都要按(從左往右)的順序計算;

(2)在沒有括弧的算式里,如果既有乘、除法,又有加、減法,要先算(乘、除法),後算(加、減法);(先乘除,後加減)

(3)在有括弧的算式里,要先算括弧裡面的,後算括弧外面的。

5.有關 0 的計算

①一個數和0相加,結果還得原數:a+0=a 0+a=a

②一個數減去0,結果還得這個數:a-0=a

③一個數減去它自己,結果得零:a-a=0

④一個數和0相乘,結果得0:a×0=0 ;0×a=0

⑤0除以一個非0的數,結果得0:0÷a=0;

⑥0不能做除數:a÷0=(無意義)

6.租船問題。解答租船問題的方法:先假設、再調整。


第二單元 觀察物體二

1.正確辨認從上面、前面、左面觀察到物體的形狀。

2.觀察物體有訣竅,先數看到幾個面,再看它的排列法,畫圖形時要注意,只分上下畫數量。

3.從不同位置觀察同一個物體,所看到的圖形有可能一樣,也有可能不一樣。

4.從同一個位置觀察不同的物體,所看到的圖形有可能一樣,也有可能不一樣。

5.從不同的位置觀察,才能更全面地認識一個物體。


第三單元 運算定律

……

更多詳細內容請見網路文庫:2021人教版小學四年級下冊數學全冊1-8單元知識點歸納

⑼ 怎麼才能把數學知識點背會

數學學習方法
這里我們講一下數學學習的方法.這是我們應用國外的快速學習方法,根據數學學科特點提出來的.由於代數學習法和幾何學習法的不同,我們分別進行討論.
一、代數學習法.
抄標題,瀏覽定目標.
閱讀並記錄重點內容.
試作例題.
快做練習,歸納題型.
回憶小結
二、幾何學習四大步.
1.①書寫標題,瀏覽教材
②自我講授,寫出目錄
2.①按目錄,讀教材
②自我講授幾何概念及定理
3.①閱讀例題,形成思路
②寫出解答例題過程
4.①快做練習.
②小結解題方法.
三.數學概念學習方法.
數學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什麼程度.數學概念是反映數學對象本質屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式.一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷.這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習.
下面我們歸納出數學概念的學習方法:
閱讀概念,記住名稱或符號.
背誦定義,掌握特性.
舉出正反實例,體會概念反映的范圍.
進行練習,准確地判斷.
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數.有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里.教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式.
我們介紹的數學公式的學習方法是:
書寫公式,記住公式中字母間的關系.
懂得公式的來龍去脈,掌握推導過程.
用數字驗算公式,在公式具體化過程中體會公式中反映的規律.
將公式進行各種變換,了解其不同的變化形式.
將公式中的字母想像成抽象的框架,達到自如地應用公式.
五、數學定理的學習方法.
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題.
下面我們歸納出數學定理的學習方法:
背誦定理.
分清定理的條件和結論.
理解定理的證明過程.
應用定理證明有關問題.
體會定理與有關定理和概念的內在關系.
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行.
六、初學幾何證明的學習方法.
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展.
看題畫圖.(看,寫)
審題找思路(聽老師講解)
閱讀書中證明過程.
回憶並書寫證明過程.
七 .提高幾何證明能力的化歸法.
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧.這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的.
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束.此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程.
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論.
2.畫圖,作輔助線,尋找證題途徑.
3.記錄證題途徑的各個關鍵步驟.
4.總結證明思路,使證題過程在大腦中形成清淅的印象.
八、波利亞解題思考方法.
預見法
收集資料,進行組織.
辨認與回憶,充實與重新安排.
分離與組合.
回顧
解答問題法.
弄清問題.
擬定問題.
實現計劃.
回顧.
解題過程自問法.
我選擇的是怎樣的一條解題途徑.
我為什麼作出這樣的選擇?
我現在已進行到了哪一階段?
這一步的實施在整個解題過程中具有怎樣的地位?
我目前所面臨的主要困難是什麼?
解題的前景如何?
九 、數學學習的基本思維方法.
1. 觀察與實驗
2.分析與綜合
3.抽象與概括
4.比較與分類
5.一般化與特殊化
6.類比聯想與歸納猜想
十、理解、鞏固、應用、系統化四步學習法
1.理 內容,標志,階段,過程.
2.鞏 固:透徹理解,牢固記憶,多方聯想,合理復習.
3.應 用:理論,實踐,具體,綜合.
4.系統化: ①明確系統內部各要素的屬性.
②使各要素之間形成多方的聯系.
③概括各要素的各種屬性,形成整體性.
④同化於原知識系統之中.
十一、高效學習方法在數學學習中的應用
超級學習方法

請採納,謝謝