當前位置:首頁 » 基礎知識 » 一年級重點知識點總結數學
擴展閱讀
設備的基礎管理有哪些 2025-01-12 15:48:33
下象棋小知識 2025-01-12 15:46:45

一年級重點知識點總結數學

發布時間: 2022-08-02 10:58:43

① 初中一年級數學知識點有哪些

如下:

1、有理數的加法法則

兩數相加,取相同的符號,並把絕對值相加。

絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

互為相反數的兩個數相加得零。

一個數同零相加,仍得這個數。

2、有理數加法的運算律

加法交換律:兩個數相加,交換加數的位置,和不變。即a+b=b+a。

加法結合律:三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。即(a+b)+c=a+(b+c)。

3、有理數減法法則:減去一個數,等於加這個數的相反數。即a-b=a+(-b)。

4、有理數的乘法法則

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

單項式、多項式的概念

1、單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。

2、單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

3、多項式:幾個單項式的和叫多項式。

4、多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

② 小學一年級數學一般都學什麼一年級數學

《小學一年級數學》網路網盤高清資源免費在線觀看

鏈接:

提取碼: h97f

數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。

③ 1至6年級數學知識總結

小學1至6年級數學主要學習基礎的計算和幾何代數的初步認識。數與代數裡面的基礎概念,如數位、自然數、正數、負數等;圖形與幾何部分的基礎概念,如角、角的定點、角的邊、三角形、四邊形等。

小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;

小學二年級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;

小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;

小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;

小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;

小學六年級:比例百分比概率,圓扇圓柱及圓錐。

④ 小學數學知識點總結

《小學蘇教數學一二三四五六上冊知識點歸納》網路網盤資源免費下載

鏈接:https://pan..com/s/1C0FyvStiI3Q1lrSHYNkUsw

提取碼:9wi8

小學蘇教數學一二三四五六上冊知識點歸納|一年級上冊數學期末復習知識點歸納(17頁).doc|五年級上冊數學數學期末復習知識點歸納(7頁).doc|五年級上冊數學期末復習知識點歸納(23頁)(教師版).docx|五年級上冊數學期末復習知識點歸納(21頁)(學生版).docx|四年級上冊數學期末復習知識點歸納(20頁)(教師版).docx|四年級上冊數學期末復習知識點歸納(18頁)(學生版).docx|三年級上冊數學數學期末復習知識點歸納(3頁).doc|三年級上冊數學期末復習知識點歸納(22頁)(教師版).docx|三年級上冊數學期末復習知識點歸納(20頁)(學生版).docx|六年級上冊數學期末復習知識點歸納(17頁)(教師版).doc|六年級上冊數學期末復習期末知識點歸納(4頁).doc|六年級上冊期末復習期末知識點歸納(16頁)(學生版).doc|二年級上冊數學期末復習知識點歸納(3頁).docx

⑤ 小學一年級數學必背知識點

小學一年級數學必背知識點:
一、讀數、寫數
1、20以內的數
順數:從小到大的順序
倒數:從大到小的順序20191817······
單數:1、3、5、7、9······
雙數:2、4、6、8、10······
(註:0既不是單數,也不是雙數,0是偶數。在生活中說單雙數,在數學中說奇偶數。)
2、兩位數
(1)我們生活中經常遇到十個物體為一個整體的情況,實際上十個「1」就是一個「10」,一個「10」就是十個「1」。
如:A:11里有(1)個十和(1)個一;
11里有(11)個一。
12里有(1)個十和(2)個一;
12里有(12)個一13里有(1)個十和(3)個一;
13里有(13)個一14里有(1)個十和(4)個一;
14里有(14)個一15里有(1)個十和(5)個一;
15里有(15)個一······
19里有(1)個十和(9)個一;
或者說,19里有(19)個一20里有(2)個十;
20里有(20)個一B:看數字卡片(11~20),說出卡片上的數是由幾個十和幾個一組成的。
(2)在計數器上,從右邊起第一位是什麼位?(個位)第2位是什麼位?(十位)個位上的1顆珠子表示什麼?(表示1個一)十位上的1顆珠子表示什麼?(表示1個十)
(3)先讀11、12、13、14、15、16、17、18、19、20,再寫出來。
如:14,讀作:十四,寫作:14。個位上是4,表示4個一,十位上數字是1,表示1個十。
二、比較大小和第幾
1、給數字娃娃排隊
5、6、10、3、20、17,可以按從大到小的順序排列,也可以按從小到大的順序排列。
(注意做題時,寫一個數字,劃去一個,做到不重不漏。)
2、任意取20以內的兩個數,能夠用誰比誰大或誰比誰小說一句話。
如:16比15大,寫出來就是16>159比 13小,寫出來就是9<13
3、「比」字的用法
看「比」字的後面是誰,比幾大1就要在幾的基礎上加1,比幾小1就要在幾的基礎上減1。
如:比5小2的數是(3),比4多3的數是(7)。
三、幾和第幾
觀察圖,說說有幾個圖形?(16個圖形)從左數第幾位是什麼?從右數第幾位是什麼?把左邊三個圈起來;把右邊第2個圈起來。
(復習此類知識時,分清左右,同時確定方向;知道幾個和第幾個的區別。)
四、相鄰數
2的前面是1,2的後面是3,2再添上1就是3,3再去掉1就是2,與2相鄰的數是1和3。
3的前面是2,3的後面是4,3再添上1就是4,4再去掉1就是3,與3相鄰的數是2和4。······
20的前面是19,20的後面是21,······,與20相鄰的數是19和21。
五、事物的對比
1.兩個事物的對比
比較兩個事物的大小、多少、長短、高矮、輕重等,要以其中的一個事物作為參照,或者說以其中的一個事物作為標准,然後再比較,這樣就能說另一個事物比作為標準的那個事物大或者小、多或少等。
比長短:常用的方法注意要一端對齊,也可以採用數格比較,或對稱比較。
比高矮:注意在同一平面上去比較。
比多少:運用一一對應原則。
2.三個事物比較
可以先兩個兩個的比較。然後根據比較的結果,得出三個事物比較的結論。
如:A比B重,B比C重,那麼可以得到A比C重。A最重,C最輕。
A比B重,A比C重,只能得到A最重,還要比較B和C,才知道誰最輕。
六、加減法(一)
把兩個數合並在一起用加法。
加數+加數=和如:3+13=16中,3和13是加數,和是16。
從一個數裡面去掉一部分求剩下的是多少用減法。
被減數-減數=差如:19-6=13中,19是被減數,6是減數,差是13。

⑥ 一年級上學期數學復習要點

第一單元
1、 數一數
數數:數數時,按一定的順序數,從1開始,數到最後一個物體所對應的那個數,即最後數到幾,就是這種物體的總個數。
2、 比多少
同樣多:當兩種物體一一對應後,都沒有剩餘時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應後,其中一種物體有剩餘,有剩餘的那種物體多,沒有剩餘的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
第二單元
位置
1、 認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、 認識前、後
體會前、後的含義:一般指面對的方向就是前,背對的方向就是後。
同一物體,相對於不同的參照物,前後位置關系也會發生變化。
從而得出:確定兩個以上物體的前後位置關系時,要找准參照物,選擇的參照物不同,相對的前後位置關系也會發生變化。
3、 認識左、右
以自己的左手、右手所在的位置為標准,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為准。
第三單元
1-5的認識和加減法
一、 1--5的認識
1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。
2、1—5各數的數序
從前往後數:1、2、3、4、5.
從後往前數:5、4、3、2、1.
3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數等於後面的數,用「=」表示,即3=3,讀作3等於3。前面的數大於後面的數,用「>」表示,即3>2,讀作3大於2。前面的數小於後面的數,用「<」表示,即3<4,讀作3小於4。
2、填「>」或「<」時,開口對大數,尖角對小數。
三、第幾
1、確定物體的排列順序時,先確定數數的方向,然後從1開始點數,數到幾,它的順序就是「第幾」。第幾指的是其中的某一個。
2、區分「幾個」和「第幾」
「幾個」表示物體的多少,而 「第幾」只表示其中的一個物體。
四、分與合
數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.
把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內數的加法,可以採用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。
七、0
1、0的意義:0表示一個物體也沒有,也表示起點。
2、0的讀法:0讀作:零
3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,並且要寫圓滑,不能有稜角。
4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等於0.
如:0+8=8 9-0=9 4-4=0

第四單元
認識圖形
1、長方體的特徵:長長方方的,有6個平平的面,面有大有小。

一年級數學上冊知識點要點
2、正方體的特徵:四四方方的,有6個平平的面,面的大小一樣。

一年級數學上冊知識點要點
3、圓柱的特徵:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。

4、球的特徵:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。
5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。
第五單元
6-10的認識和加減法
一、6—10的認識:
1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往後數也就是從小往大數。
2、10以內數的順序:
(1)從前往後數:0、1、2、3、4、5、6、7、8、9、10。
(2)從後往前數:10、9、8、7、6、5、4、3、2、1、0。
3、比較大小:按照數的順序,後面的數總是比前面的數大。
4、序數含義:用來表示物體的次序,即第幾個。
5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。
記憶數的組成時,可由一組數想到調換位置的另一組。
二、6—10的加減法
1、10以內加減法的計算方法:根據數的組成來計算。
2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。
3、「大括弧」下面有問號是求把兩部分合在一起,用加法計算。「大括弧 」上面的一側有問號是求從總數中去掉一部分,還剩多少,用減法計算。
三、連加連減
1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。
2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。
四、加減混合
pan > 加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。

第六單元
11-20各數的認識
1、數數:根據物體的個數,可以用11—20各數來表示。
2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20、
3、比較大小:可以根據數的順序比較,後面的數總比前面的數大,或者利用數的組成進行比較。
4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。
5、數位:從右邊起第一位是個位,第二位是十位。
6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。
7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2.有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0佔位。
8、十加幾、十幾加幾與相應的減法
(1)、10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。
如:10+5=15 17-7=10 18-10=8
(2)、十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。
(3)、加減法的各部分名稱:
在加法算式中,加號前面和後面的數叫加數,等號後面的數叫和。
在減法算式中,減號前面的數叫被減數,減號後面的數叫減數,等號後面的數叫差。
9、解決問題
求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計演算法(用大數減小數再減1的方法來計算)。

第七單元
認識鍾表
1、認識鍾面
鍾面:鍾面上有12個數,有時針和分針。
分針:鍾面上又細又長的指針叫分針。
時針:鍾面上又粗又短的指針叫時針。
2、鍾表的種類:日常生活中的鍾表一般分兩種,一種:掛鍾,鍾面上有12個數,分針和時針。另一種:電子表,表面上有兩個點「:」,「:」的左邊和右邊都有數。
3、認識整時:分針指向12,時針指向幾就是幾時;電子表上,「:」的右邊是「00」時表示整時,「:」的左邊是幾就是幾時。
4、整時的寫法:整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00

第八單元
20以內的進位加法
1、9加幾計算方法:計算9加幾的進位加法,可以採用「點數」「接著數」「湊十法」等方法進行計算,其中「湊十法」比較簡便。
利用「湊十法」計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。
2、8、7、6加幾的計算方法:(1)點數;(2)接著數;(3)湊十法。可以「拆大數、湊小數」,也可以「拆小數、湊大數」。
3、5、4、3、2加幾的計算方法:(1)「拆大數、湊小數」。(2)「拆小數、湊大數」。
4、解決問題
(1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。
(2)求總數的實際問題,用加法計算。

⑦ 初中一年級數學知識點是什麼

初中一年級上期數學知識點:

第一章有理數。

一、知識框架。

二、知識概念。

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數。

(2)有理數的分類:①②。

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0。

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數。

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。

(2)絕對值可表示為:或;絕對值的問題經常分類討論。

5.有理數比大小:

(1)正數的絕對值越大,這個數越大。

(2)正數永遠比0大,負數永遠比0小。

(3)正數大於一切負數。

(4)兩個負數比大小,絕對值大的反而小。

(5)數軸上的兩個數,右邊的數總比左邊的數大。

(6)大數-小數>0,小數-大數<0。

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數。

7.有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值。

(3)一個數與0相加,仍得這個數。

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c)。

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。

10有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘。

(2)任何數同零相乘都得零。

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

11.有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc)。

(3)乘法的分配律:a(b+c)=ab+ac 。

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。

13.有理數乘方的法則:

(1)正數的任何次冪都是正數。

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a -b)n=-(b-a)n ,當n為正偶數時:(-a)n =an或(a-b)n=(b-a)n 。

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方。

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪。

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

18.混合運演算法則:先乘方,後乘除,最後加減。

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題。

體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

第二章整式的加減。

一、知識框架。

二、知識概念。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1.理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2.理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。

第三章一元一次方程。

一、知識框架。

二、知識概念。

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。

4.列一元一次方程解應用題:

(1)讀題分析法:…………多用於「和,差,倍,分問題」。

仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。

(2)畫圖分析法:…………多用於「行程問題」。

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間。

(2)工程問題:工作量=工效·工時。

(3)比率問題:部分=全體·比率。

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度。

(5)商品價格問題:售價=定價·折·,利潤=售價-成本。

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a。

S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

⑧ 一年級下學期數學知識點有哪些

一年級下學期數學知識點如下:

1、比較兩個事物的大小、多少、長短、高矮、輕重等,要以其中的一個事物作為參照,或者說以其中的一個事物作為標准,然後再比較,這樣就能說另一個事物比作為標準的那個事物大或者小、多或少等。

2、把兩個數合並在一起用加法。加數+加數=和如:3+13=16中,3和13是加數,和是16。

3、20以內不進位加法和不退位減法。

4、當已知分類標准時,我們只需要判斷所給的事物是屬於哪個類別的,然後將同一類的事物放在一起即可。

5、圓柱就像一根柱子。它有上下兩個圓圓的面,而且大小一樣,用它可以畫出圓形;另一個面是彎曲的,我們把彎曲的面放在桌子上就可以滾動它。

⑨ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

⑩ 一年級下學期數學知識點有哪些

一年級下學期數學知識點有如下:

1、加法公式。

加數+加數=和。

和=加數+加數。

和-加數=另一個加數。

另一個加數=和-加數。

交換加數的位置,和不變。

2、減法公式。

被減數-減數=差。

差=被減數-減數。

被減數-差=減數。

減數=被減數-差。

差+減數=被減數。

被減數=減數+差。

3、一個數從右邊起第一位是個位,表示幾個ー,第二位是十位,表示幾個十,第三位是百位,表示幾個百。

20裡面有2個十,也可以說20裡面有20個一。

0裡面有1個十,也可以說10裡面有10個一。

4、讀數和寫數都從高位起,讀作是寫語文字,寫作是寫數學字。

個的前面寫數學字,個的後面寫語文字。

5、時針短,分針長。1時=60分。60分=1時。1刻=15分。

分針指著12是整時,時針指著數字幾就是幾時。

分針指著6是半時,時針過數字幾就是幾時半。

鍾面數字有十二個。兩數之間有五小格,一共有六十小格。

時針轉一個數字是一時,分針轉格是一分。

時針剛過數字幾,就是表示幾時多。