當前位置:首頁 » 基礎知識 » 幾何的數學知識小學
擴展閱讀
兒童坐飛機票價怎麼算 2025-01-12 17:44:06
鋼結構基礎短柱怎麼計算 2025-01-12 17:15:31

幾何的數學知識小學

發布時間: 2022-08-02 07:16:54

① 小學階段學過的幾何圖形相關知識是哪些

軸對稱圖形:如果一個圖形沿著一條直線對折,直線左右的兩部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線叫做對稱軸。長方形(2條對稱軸),正方形(4條對稱軸),等腰三角形(1),等邊三角形(3),等腰直角三角形(1),等腰梯形(1),圓(無數條對稱軸)等到,都是對稱圖形。

中心對稱圖形:如果一個圖形繞著一個定點旋轉180度後,能夠與原來的圖形本身重合,這個圖形就叫做中心對稱圖形。這點就是它的對稱中心。如平形四邊形就是中心對稱圖形。

點: 線和線相交於點。

直線: 某點在空間中或平面上沿著一定方向和相反方向運動,所畫成的圖形,叫做直線。直線是向相反方向無限延伸的,所以它沒有端點,不可以度量。 (可以用表示直線上任意兩點的大寫字母來記:直線AB,也可以用一個小寫字母來表示:直線a)

射線:由一個定點出發,向沿著一定的方向運動的點的軌跡,叫做射線。這個定點叫做射線的端點,這個端點也叫原點。射線只有一個端點,可以向一端無限延長。不可以度量。(射線可以用表示他端點,和射線上任意一點的兩個大寫字母表示:射線OA)

線段:直線上任意兩點間的部分,叫做線段。這兩點叫做線段的端點,線段有長度,可以度量。(線段可以用兩個端點的大寫字母表示:線段AB,也可以用一個小寫字母表示;線段a)

線段的性質:在連接兩點的所有線中,線段最短。

角:從一點引出兩條射線所組成的圖形,叫做角。這兩條射線的公共端點,叫做角的頂點。組成角的兩條射線,叫做角的邊。 角的大小與夾角兩邊的長短無關。

角的分類:

直角:90度的角叫做直角

平角:一條射線由原來的位置,繞它的端點按逆時針方向旋轉,到所成的角的終邊和始邊成一直為止,這時所成的角叫做平角。或者角的兩邊的方向相反,且同在一條直線上時的角叫做平角,平角是180度。

銳角:小於90度的角叫做銳角

鈍角:大於90度的角叫做鈍角

周角:一條射線由原來的位置,繞它的端點,按逆時針方向旋轉,到所成的角的終邊和始邊重合,這時所成的角叫做周角。周角是360度。

1周角=2平角 1平角=2直角

垂直與平行:在同一個平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。

如果兩條直線相交成直角,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

點到直線的距離:從直線外一點作這條直線的垂線,這點和垂足之間的線段長度,叫做點到直線的距離。從直線外一點到這條直線所畫的垂線段最短。

平行線間的距離:從一條直線上的一點向它的平行線作一條垂線,這點到垂足之間的線段的長度,叫做平行線間的距離。平行線間的距離處處相等。即,平行線間的垂線的長度都相等。

三角形:由三條線段圍成的圖形(每相鄰兩條線段的的端點相連)叫做三角形。從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形具有穩定性。

三角形的高:任意三角形的三條高都相交於一點。

三角形邊的性質:1、三角形任何兩邊的長度和大於第三邊。

2、三角形的任何兩邊的差小於第三邊。

三角形角三個內角的度數和叫做三角形的內角和。三角形的內角和是180度。

三角形的分類:1、按邊分:

三條邊都不相等的三角形,叫不等邊三角形;

三條邊中有兩條邊相等的三角形,叫等腰三角形。

三條邊都相等的三角形,叫做等邊三角形,也叫正三角形。

2、按角分:

三個角都是銳角的三角形,叫做銳角三角形。

有一個角是直角的三角形,叫做直角三角形。

有一個角是鈍角的三角形,叫做鈍角三角形。(銳角三角形和鈍角三角形合稱為斜三角形。

三角形的面積:三角形的面積=底×高÷2 通常用S表示三角形的面積,用a表示底,用h表示高。那麼:S=ah÷2 或 S=1/2ah

長方形:對邊相等,四個角都是直角的四邊形,叫做長方形。長方形的長邊叫做長方形的長,短邊叫做長方形的寬。長方形的對邊相等,並且四個角都是直角;對角線長度相等,又互相平行分。

周長:圖形一周的長度就是圖形的周長。

長方形的周長:長方形的周長=(長+寬)×2 通常用C表示周長,a表示長,b表示寬,那麼C=(a+b)×2

長方形的面積:長方形的面積=長×寬 字母公式:S=a×b

正方形:長和寬相等的長方形,叫做正方形。正方形的每條邊都叫做邊長。正方形的四條邊的長度都相等,四個角都是直角。正方形又是特殊的長方形。對角線的長度相等,又互相垂直且平分。

正方形的周長:正方形的周長=邊長×4 字母公式:C=4a

正方形的面積:正方形的面積=邊長×邊長 字母公式:S=a×a或S=a的平方

平行四邊形:兩組對邊分別平行的四邊形,叫做平行四邊形。平行四邊行對邊相等,對角相等

平行四邊形的任意一組對邊間的距離,叫做平行四邊形的高,和高垂直的一邊,叫做平行四邊行的底。

平行四邊形的面積:平行四邊形的面積=底×高 用字母表示:S=a×h

菱形:有一組鄰邊相等的平行四邊形,叫做菱形。菱形的四條邊都相等,對角相等。

梯形:只有一組對邊平行的四邊形,叫做梯形。在梯形中,互相平行的一組對邊,分別叫做梯形的上底和下底。不平行的一組對邊,叫做梯形的腰。梯形的兩底之間的距離,叫做梯形的高。

等腰梯形:兩腰相等的梯形,叫做等腰梯形。

直角梯形:一條腰垂直於底的梯形,叫做直角梯形。

梯形的叫位線:梯形兩腰中點的連線,叫做梯形的中位線。梯形中位線平行於上、下底,並且等於兩底和的一半。

梯形的面積:梯形的面積=(上底+下底)×高÷2 梯形的面積=中位線×高,用a表示上底,b表示下底,m表示中位線,h表示高。那麼, 用字母表示:S=1/2(a+b)h 或 S=mh

圓:在平面上,以一個定點為中心,以一定長度為距離而運動一周形成的軌跡,叫做圓周,簡稱圓。這個定點叫做圓心,圓心通常用字母O表示。連接圓心和圓上任意一點的線段叫做半徑,一般用字母r表示。通過圓心,並且兩端都在圓上的線段叫做直徑。一般用字母d表示。

圓的性質:在同一個圓內,,所有的半徑都相等,所有的直徑都相等;直徑等於半徑的2倍

圓周率:圓的周長與這個圓的直徑長度的比,叫做圓周率。圓周率是一個固定的值,用希臘字母「π」表示。它是一個無限不循環小數,但在實際應用中,一般取它的近似值,即π=3.14.

約在2000年前中國的古代數學著作《周髀算經》中就有「周三徑一」的說法,意思是說圓的周長是它直徑的3倍。約1500年前,中國有一位偉大的數學家和天文學家祖沖之,他計算出圓周率應在:3.1415926和3. 1415927之間,成為世界上第一個把圓周率值精確到7位小數的人。他的這項偉大成就比國外數學家得出這樣精確的數值的時間,至少要早1000年。現在人們用計算機算出的圓周率,小數點後面已經達到上億位。

圓的周長:圓的周長=圓周率×直徑 用字母示:C=πd 或 C=2πr

圓的面積:圓的面積=圓周率×半徑的平方 字母公式:S=πr的平方

環形的面積:即圓環。兩個半徑不相等的同心圓的圓周之間所夾的平面部分,叫做環形。面積等於外圓的面積減去內圓的面積。

扇形:由圓心角和圓心角所對的弧圍成的圖形,叫做扇形。

扇形面積:扇形面積等於所在圓的面積除以360,再乘以圓心角的度數值。用n表示圓心角的度數,那麼:S=πr的平方/360×n。

體積:物體的占空間的大小,叫做物體的體積。

容積:容器所能容納物質的體積的大小,叫做容器的容積。

長方體:長方體是由6個長方形(特殊情況也有兩個相對的面是正方形)圍成的立體圖形。在一個長方體中,有6個面,12條棱,8個頂點,相對的面完全相同,相對的棱長度相等。

相交於一個頂點的三條棱的長度分別叫做長方形的找,寬,高。

長方體的表面積:長方體6個面的面積總和叫做它的表面積。長方體表面積=(長×高+長×寬+寬×高)×2

長方體的體積:長方體的體積=長×寬×高 或 長方體的體積=底面×積高 通常用V表示體積,a表示長,b表示寬,h表示高,S表示底面積。那麼,V=abh 或 V=sh

正方體:長、寬、高都相等的長方體,叫做正方體(也叫立方體)。正方體六個面都是正方形,12條棱長度都相等,6個面的面積都相等。正方體是特殊的長方體。

正方體的表面積:正方體的表面積=棱長×棱長×6

正方體的體積:正方形的體積=棱長×棱長×棱長 字母公式 V=a ×a×a或 V=a的立方

土石方:也叫做方,1立方米就是1方。這是修農田水利,築堤壩,挖溝渠,修築公路,建築房屋等工程,常駐以土石方計算所需要的沙,石,土的體積,通常用方做單位。

圓柱:用長方形的一邊作軸,並旋轉360度,所得的幾何體,叫做圓柱,簡稱圓柱。圓柱的上下兩個面是相等的圓,叫做圓柱的底面;兩個底面之間的距離叫做圓柱的高;曲面部分稱為側面。圓柱的側面展開是一個長方形(或正方形)長就是圓柱的底面周長,寬就是圓柱的高。

圓柱的表面積:圓柱的表面積=2底面積×底面周長×高

圓柱的體積:圓柱的體積=底面積×高 字母公式 V=sh

圓錐:用直角三角形的一條直角邊為軸,把它旋轉360度,所得的幾何體,叫做直圓錐,簡稱圓錐。圓錐的底面是圓形;圓錐的頂點到底面的距離,叫做圓錐的高;圓錐頂點到底面圓周上任意一點的距離,叫圓錐的母線。

圓錐的體積:圓錐的體積=1/3底面積×高 字母公式 V=1/3sh

② 小學所有幾何圖形的認識知識整理

三角形(三條邊,兩邊之和大於第三邊)
正方形(四條邊,四個角為直角,邊邊相等,對邊平行)
長方形(四條邊,四個角為直角,對邊平行且相等,鄰邊不相等)
圓形(曲線,中心對稱圖形)
平行四邊形(四條,對邊平行且相等,鄰邊不相等)
注意:長方形和正方形是特殊的平行四邊形
望採納

③ 小學圖形與幾何復習人教版知識點(教材全解)

(一)圖形的認識、測量

量的計量

一、長度單位是用來測量物體的長度的。常用的長度單位有:千米、米、分米、厘米、毫米。

二、長度單位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米

三、面積單位是用來測量物體的表面或平面圖形的大小的。常用面積單位:平方千米、公頃、平方米、平方分米、平方厘米。

四、測量和計算土地面積,通常用公頃作單位。邊長100米的正方形土地,面積是1公頃。

五、測量和計算大面積的土地,通常用平方千米作單位。邊長1000米的正方形土地,面積是1平方千米。

六、面積單位:(100)

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

七、體積單位是用來測量物體所佔空間的大小的。常用的體積單位有:立方米、立方分米(升)、立方厘米(毫升)。

八、體積單位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升


平面圖形【認識、周長、面積】

一、用直尺把兩點連接起來,就得到一條線段;把線段的一端無限延長,可以得到一條射線;把線段的兩端無限延長,可以得到一條直線。線段、射線都是直線上的一部分。線段有兩個端點,長度是有限的;射線只有一個端點,直線沒有端點,射線和直線都是無限長的。

二、從一點引出兩條射線,就組成了一個角。角的大小與兩邊叉開的大小有關,與邊的長短無關。角的大小的計量單位是(°)。

三、角的分類:小於90度的角是銳角;等於90度的角是直角;大於90度小於180度的角是鈍角;等於180度的角是平角;等於360度的角是周角。

四、相交成直角的兩條直線互相垂直;在同一平面不相交的兩條直線互相平行。

五、三角形是由三條線段圍成的圖形。圍成三角形的每條線段叫做三角形的邊,每兩條線段的交點叫做三角形的頂點。

六、三角形按角分,可以分為銳角三角形、直角三角形和鈍角三角形。

按邊分,可以分為等邊三角形、等腰三角形和任意三角形。

七、三角形的內角和等於180度。

八、在一個三角形中,任意兩邊之和大於第三邊。

九、在一個三角形中,最多隻有一個直角或最多隻有一個鈍角。

十、四邊形是由四條邊圍成的圖形。常見的特殊四邊形有:平行四邊形、長方形、正方形、梯形。

十一、圓是一種曲線圖形。圓上的任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。通過圓心並且兩端都在圓的線段叫做圓的直徑。

十二、有一些圖形,把它沿著一條直線對折,直線兩側的圖形能夠完全重合,這樣的圖形就是軸對稱圖形。這條直線叫做對稱軸。

十三、圍成一個圖形的所有邊長的總和就是這個圖形的周長。

十四、物體的表面或圍成的平面圖形的大小,叫做它們的面積。

十五、平面圖形的面積計算公式推導:

【1】平行四邊形面積公式的推導過程

④ 小學數學幾何知識劃分為哪幾種類型

小學數學幾何知識的話,主要分為以下三種類型。
第1種類型是線和角,主要包括直線,射線線段,平行線,垂線。還有銳角,直角,鈍角。
第2類平面圖形,包括長方形,正方形,正三角形,平行四邊形,梯形,圓,扇形,軸對稱圖形。
第3種立體圖形,主要包括長方體,正方體,圓柱和圓錐。

⑤ 小學數學 幾何知識

(銳角 直角 鈍角)
(等邊三角形 等腰三角形)

⑥ 小學數學小學中所學過的幾何圖形有哪些

平面(規則):正方形,長方形(矩形),三角,圓,線段,直線,橢圓,角。

立體(規則):正方體,長方體,圓柱,稜柱,圓台,稜台,圓錐,棱錐,球(不是很常見)。

幾何圖形的應用:

1.幾何圖形的應用非常廣泛,無論在設計、繪畫創作、數學研究中都需要藉助幾何圖形進行。

2.數學定義、定理等用數學語言敘述起來很抽象,記住定理有一定難度,因此幫助學生記住定義定理是教學中一個重要環節。若在教學中恰當地藉助幾何圖形,數形結合,使學生對直觀圖形加深理解以掌握其定理。

⑦ 我想問下幾何現在是從小學幾年紀開始學的。

現在的小學教材是綜合性的,沒有單一的幾何、代數。幾何是來自生活的,所以對生活中的很多反面都有著重要的作用,比如:面積、體積、平移等都屬於幾何知識。

笛卡爾引進坐標系後,代數與幾何的關系變得明朗,且日益緊密起來。這就促使了解析幾何的產生。解析幾何是由笛卡爾、費馬分別獨立創建的。

這又是一次具有里程碑意義的事件。從解析幾何的觀點出發,幾何圖形的性質可以歸結為方程的分析性質和代數性質。幾何圖形的分類問題(比如把圓錐曲線分為三類),也就轉化為方程的代數特徵分類的問題,即尋找代數不變數的問題。

平面與立體:

最早的幾何學當屬平面幾何。平面幾何就是研究平面上的直線和二次曲線(即圓錐曲線,就是橢圓、雙曲線和拋物線)的幾何結構和度量性質(面積、長度、角度)。平面幾何採用了公理化方法,在數學思想史上具有重要的意義。

平面幾何的內容也很自然地過渡到了三維空間的立體幾何。為了計算體積和面積問題,人們實際上已經開始涉及微積分的最初概念。

以上內容參考:網路-幾何

⑧ 小學數學空間與幾何的知識點,最好是100字

一、線和角
(1)線
直線
直線沒有端點;長度無限;過一點可以畫無數條,過兩點只能畫一條直線。
射線
射線只有一個端點;長度無限。
線段
線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。
平行線
在同一平面內,不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
垂線
兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
(2)角
從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
角的分類
銳角:小於90°的角叫做銳角。
直角:等於90°的角叫做直角。
鈍角:大於90°而小於180°的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。
周角:角的一邊旋轉一周,與另一邊重合。周角是360°。
二、平面圖形
1.長方形
(1)特徵
對邊相等,4個角都是直角的四邊形。有兩條對稱軸。
(2)計算公式
c=2(a+b)
s=ab
2.正方形
(1)特徵:
四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。
(2)計算公式
c=4a
s=a2
3.三角形
(1)特徵
由三條線段圍成的圖形。內角和是180度。三角形具有穩定性。三角形有三條高。
(2)計算公式
s=ah/2
(3)分類
按角分
銳角三角形:三個角都是銳角。
直角三角形:有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。
鈍角三角形:有一個角是鈍角。
按邊分
不等邊三角形:三條邊長度不相等。
等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。
等邊三角形:三條邊長度都相等;三個內角都是60度;有三條對稱軸。
4.平行四邊形
(1)特徵
兩組對邊分別平行的四邊形。
相對的邊平行且相等。對角相等,相鄰的兩個角的度數之和為180度。平行四邊形容易變形。
(2)計算公式
s=ah
5.梯形
(1)特徵
只有一組對邊平行的四邊形。
中位線等於上下底和的一半。
等腰梯形有一條對稱軸。
(2)公式
s=(a+b)h/2=mh
6.圓
(1)圓的認識
平面上的一種曲線圖形。
圓中心的一點叫做圓心。一般用字母o表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。
在同一個圓里,有無數條半徑,每條半徑的長度都相等。
通過圓心並且兩端都在圓上的線段叫做直徑。一般用d表示。
同一個圓里有無數條直徑,所有的直徑都相等。
同一個圓里,直徑等於兩個半徑的長度,即d=2r。
圓的大小由半徑決定。圓有無數條對稱軸。
(2)圓的畫法
把圓規的兩腳分開,定好兩腳間的距離(即半徑);
把有針尖的一隻腳固定在一點(即圓心)上;
把裝有鉛筆尖的一隻腳旋轉一周,就畫出一個圓。
(3)圓的周長
圍成圓的曲線的長叫做圓的周長。
把圓的周長和直徑的比值叫做圓周率。用字母∏表示。
(4)圓的面積
圓所佔平面的大小叫做圓的面積。
(5)計算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r2
7.扇形
(1)扇形的認識
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。
圓上AB兩點之間的部分叫做弧,讀作"弧AB"。
頂點在圓心的角叫做圓心角。
在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關。
扇形有一條對稱軸。
(2)計算公式
s=n∏r2/360
8.環形
(1)特徵
由兩個半徑不相等的同心圓相減而成,有無數條對稱軸。
(2)計算公式
s=∏(R2-r2)
9.軸對稱圖形
(1)特徵
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
正方形有4條對稱軸,長方形有2條對稱軸。
等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。
等腰梯形有一條對稱軸,圓有無數條對稱軸。
菱形有4條對稱軸,扇形有一條對稱軸。
三、立體圖形
(一)長方體
1.特徵
六個面都是長方形(有時有兩個相對的面是正方形)。
相對的面面積相等,12條棱相對的4條棱長度相等。
有8個頂點。
相交於一個頂點的三條棱的長度分別叫做長、寬、高。
兩個面相交的邊叫做棱。
三條棱相交的點叫做頂點。
把長方體放在桌面上,最多隻能看到三個面。
長方體或者正方體6個面的總面積,叫做它的表面積。
2.計算公式
s=2(ab+ah+bh)
V=sh
V=abh
(二)正方體
1.特徵
六個面都是正方形
六個面的面積相等
12條棱,棱長都相等
有8個頂點
正方體可以看作特殊的長方體
2.計算公式
S表=6a2
v=a3
(三)圓柱
1.圓柱的認識
圓柱的上下兩個面叫做底面。
圓柱有一個曲面叫做側面。
圓柱兩個底面之間的距離叫做高。
進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
2.計算公式
s側=ch
s表=s側+s底×2
v=sh/3
(四)圓錐
1.圓錐的認識
圓錐的底面是個圓,圓錐的側面是個曲面。
從圓錐的頂點到底面圓心的距離是圓錐的高。
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
把圓錐的側面展開得到一個扇形。
2.計算公式
v=sh/3
(五)球
1.認識
球的表面是一個曲面,這個曲面叫做球面。
球和圓類似,也有一個球心,用O表示。
從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。
通過球心並且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等於半徑的2倍,即d=2r。
2.計算公式
d=2r

⑨ 小學數學幾何知識劃分為哪幾種類型

幾何與圖形包括,認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等等