當前位置:首頁 » 基礎知識 » 八年級數學知識點歸納框架圖
擴展閱讀
jk襯衫基礎款是什麼 2025-01-12 18:50:15
歌詞伊犁的雨是什麼歌名 2025-01-12 18:50:09

八年級數學知識點歸納框架圖

發布時間: 2022-08-01 22:55:11

❶ 蘇教版八年級上數學期末復習知識點總結+例題(完美版)

全等三角形

一、知識框架:

❷ 哪位大神能給我繪一張初中數學知識系統的框架圖哦!

1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 \x1d 4 同角或等角的餘角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大於第三邊 16 推論 三角形兩邊的差小於第三邊 17 三角形內角和定理 三角形三個內角的和等於180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,並且每一個角都等於60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等於60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 38 直角三角形斜邊上的中線等於斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關於某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 48定理 四邊形的內角和等於360° 49四邊形的外角和等於360° 50多邊形內角和定理 n邊形的內角的和等於(n-2)×180° 51推論 任意多邊的外角和等於360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 71定理1 關於中心對稱的兩個圖形是全等的 72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那麼在其他直線上截得的線段也相等 79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半 82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d wc呁/S∕\x1e? 84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d 85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 (a+c+…+m)/(b+d+…+n)=a/b 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) 94 判定定理3 三邊對應成比例,兩三角形相似(SSS) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比 97 性質定理2 相似三角形周長的比等於相似比 98 性質定理3 相似三角形面積的比等於相似比的平方 99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值 100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值 101圓是定點的距離等於定長的點的集合 102圓的內部可以看作是圓心的距離小於半徑的點的集合 103圓的外部可以看作是圓心的距離大於半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓. 110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 116定理 一條弧所對的圓周角等於它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑 119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角 121①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r �122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 123切線的性質定理 圓的切線垂直於經過切點的半徑 124推論1 經過圓心且垂直於切線的直線必經過切點 125推論2 經過切點且垂直於切線的直線必經過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等於它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等 131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那麼切點一定在連心線上 135①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)  ④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r) 136定理 相交兩圓的連心線垂直平分兩圓的公*弦 137定理 把圓分成n(n≥3): ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 139正n邊形的每個內角都等於(n-2)×180°/n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長撲愎劍篖=n兀R/180 145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內公切線長= d-(R-r) 外公切線長= d-(R+r) (還有一些,大家幫補充吧) 實用工具:常用數學公式 公式分類 公式表達式 乘法與因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2)  a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 a+b≤a+b a-b≤a+b a≤b-b≤a≤b a-b≥a-b -a≤a≤a 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理 判別式 b^2-4ac=0 註:方程有兩個相等的實根 b^2-4ac>0 註:方程有兩個不等的實根  b^2-4ac0 拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h  斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h

❸ 數學八年級重點內容

第一章 全等三角形

一.知識框架

二.知識概念

1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

3.三角形全等的判定公理及推論有:

(1)「邊角邊」簡稱「SAS」

(2)「角邊角」簡稱「ASA」

(3)「邊邊邊」簡稱「SSS」

(4)「角角邊」簡稱「AAS」

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。

第二章 軸對稱

一.知識框架

二.知識概念

1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

(2)角平分線上的點到角兩邊距離相等。

(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。

(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

(5)軸對稱圖形上對應線段相等、對應角相等。

3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點:三個內角相等,等於60°,

7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等於斜邊的一半。

9.直角三角形斜邊上的中線等於斜邊的一半。

本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。

第三章 實數

一.知識框架

二.知識概念

1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。

4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。

5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。

第四章 一次函數

一.知識框架

二.知識概念

1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。

3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

4.已知兩點坐標求函數解析式:待定系數法

一次函數是初中學生學習函數的開始,也是今後學習其它函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。

第五章 整式的乘除與分解因式

一.知識概念

1.同底數冪的乘法法則: (m,n都是正數)

2.. 冪的乘方法則: (m,n都是正數)

3. 整式的乘法

(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

4.平方差公式:

5.完全平方公式:

6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).

在應用時需要注意以下幾點:

①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.

②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,

④運算要注意運算順序.

7.整式的除法

單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.

8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法

分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。

❹ 八上的數學實數的知識結構圖

一、實數

1、平方根和算術平方根的概念及其性質:

⑴概念:如果x2=a,那麼x是a的平方根,記作:±;其中叫做a的算術平方根。

⑵性質:①當a≥0時,≥0;當a<0時,無意義;②()2=a;③=|a|。

2、立方根的概念及其性質:

⑴概念:若x3=a,那麼x是a的立方根,記作:;

⑵性質:①=a;②()3=a;③=-

3、實數的概念及其分類:

⑴概念:實數是有理數和無理數的統稱;

⑵分類:

4、與實數有關的概念:

在實數范圍內,相反數,倒數,絕對值的意義與有理數范圍內的意義完全一致;在實數范圍內,有理數的運演算法則和運算律同樣成立。

5、算術平方根的運算律:

二、簡單的平移與旋轉

三、四邊形:

1、多邊形的分類

2、本章重要知識點:

四、位置的確定:

五、一次函數:

六、二元一次方程組:

1、解方程組的基本思路是消元,消元的基本方法是:①代入消元法;②加減消元法,此外還可用圖象法;

2、方程組解應用題的關鍵是找相等關系;

3、解應用題時,按設、列、解、答四步進行;

4、每個二元一次方程都可以看成一次函數,求二元一次方程組的解,可看成求兩個一次函數圖象的交點。

七、數據的代表:

1、平均數的定義及計算方法:

⑴一般地,對於n個數x1,x2,…,xn,我們把叫做這n個數據的算術平均數,記作。

⑵如果在n個數中,x1出現了f1次,x2出現了f2次,…,xk出現了fk次,那麼:叫做x1,x2,…,xk的加權平均數;

2、算術平均數與加權平均數的區別與聯系:算術平均數是加權平均數的一種特殊情況,(它特殊在各項的權相等),當實際問題中,各項的權不相等時,計算平均數時就要採用加權平均數,當各項的權相等時,計算平均數就要採用算術平均數。

3、中位數和眾數

⑴中位數指的是n個數據按大小順序排列,處在最中間位置的一個數據(或最中間兩個數據的平均數)。

⑵眾數指的是一組數據中出現次數最多的那個數據。

以後你的學習有什麼問題都可以到「求解答網」尋找,既快捷又方便

❺ 初二上冊數學知識結構圖

有理數知識梳理一、 知識結構相反意義量正數零負數有理數數軸有理數的運算有理數大小比較相反數絕對值法則運算律加法法則減法法則乘法法則乘方法則除法法則分配律結合律交換律二、 知識要點本章主要內容是有理數的有關概念及其運算。首先,從實例出發引入負數,接著引進關於有理數的一些概念,在此基礎上,介紹有理數的加減法、乘除法和乘方運算的意義、法則和運算律。本章由3個單元組成.第一單元為有理數的概念.由「比零小的數」、「數軸」、「絕對值與相反數」等3節組成.第二單元為有理數的運算.由「有理數的加 法與減法」、「有理數的乘法與除法」、「有理數的乘方」等3節組成.第三單元為有理數的混合運算.由「有理數的混合運算」單獨1節組成.此外,通過觀察、試驗、類比、推斷等活動,體驗數、符號和圖形,能有效地描述現實世界的數量關系,發展數感和符號感;結合具體情境和生活經驗中的數學信 息,發現並提出數學問題,積極參與對數學問題的討論,積累解決問題的方法和經驗,體驗在解決問題的過程中如何與他人合作交流. 重點:有理數的運算難點:絕對值的理解和運用以及有理數乘法法則的理解 第二章整式的加減知識梳理一、知識結構圖整式的加減運算用字母表示數列式表示數量關系單項式整式多項式合並同類項去括弧二、知識要點: 本章主要內容是單項式、多項式、整式的概念,合並同類項、去括弧以及整式加減運算等。整式的加減是學習下章「一元一次方程」的直接基礎,也是以後學習分式方程和根式運算、方程以及函數等知識的基礎,同時也是學習物理、化學等學科以及其他科學技術不可缺少的數學工具。 本章包括兩節內容。在第2.1節「整式」主要介紹單項式、多項式、整式及其相關概念。這些概念是結合實際問題給出的。在引出這些概念的過程中,教科書充分重視與實際問題的聯系,在實際情境中抽象出數學概念。 在第2.2節「整式的加減」是在學習合並同類項和去括弧的基礎上,研究整式加減的運演算法則。本節內容的編寫充分重視了「數式通性」,是在有理數運算的基礎上,通過類比來研究整式的加減運演算法則。抓住重點、加強練習,打好基礎。本章教學必須抓好概念的教學,合並同類項的方法教學,以及去括弧的符號變化教學。要適當進行加強練習,使學生熟練掌握整式加減運算的法則,為今後的學習打好基礎本章重點和難點分析:根據學生已有知識經驗和本章的地位與作用,確定本章重點和難點是整式的加減運算,合並同類項和去括弧。整式的加減主要是通過合並同類項把整式化簡,因此必須要熟練地進行合並同類項。本章教學大約需要9課時,具體分配如下:2.1 整式 約2課時2.2 整式的加減 約4課時數學活動及本章小結 約2課時 單元測驗 1課時第三章 一元一次方程知識梳理一、知識結構框架圖:實際問題數學問題(一元一次方程) 數學問題的解(x = a) 實際問題的答 案檢驗解方程實際問題對利用一元一次方程解決實際問題進行進一步探究結合實際問題討論解方程(去括弧與去分母)解一元一次方程的一般步驟一元一次方程等式的性質結合實際問題討論解方程(合並同類項與移項
二、知識要點:本章主要內容包括:一元一次方程及其相關概念,一元一次方程的解法,利用一元一次方程分析解決實際問題。其中,以方程為工具分析問題、解決問題(即建立方程模型)是全章的重點,同時也是難點。全章共包括四節內容:3.1從算式到方程:分為兩個小節。3.1.1一元一次方程:本小節中引出了方程、一元一次方程、方程的解等基本概念,並且對於「根據實際問題中的數量關系,設未知數,列出一元一次方程」的分析問題過程進行了歸納。3.1.2等式的性質:本小節通過觀察、歸納引出等式的兩條性質,並直接利用它們討論一些較簡單的一元一次方程的解法。3.2一元一次方程的討論(一)——合並同類項與移項:重點討論兩方面的問題:(1)如何根據實際問題列方程?這是貫穿全章的中心問題。(2)如何解方程?本節重點討論解方程中的「合並同類項」和「移項」。3.3一元一次方程的討論(二)——去括弧與去分母:重點討論兩方面的問題:(1)如何根據實際問題列方程?這是貫穿全章的中心問題。(2)如何解方程?本節重點討論解方程中的「去括弧」和「去分母」。3.4實際問題與一元一次方程:本節重點建立實際問題的方程模型,培養學生運用一元一次方程分析和解決實際問題的能力。 第四章 圖形的初步認識知識梳理一、知識結構如下: 二、知識要點:本章是初中階段「空間與圖形」領域的起始章。主要內容是圖形的初步認識。在前兩個學段,學生已了解了一些簡單幾何體和平面圖形的基本特徵,但較為膚淺。本章將在前面學習的基礎上,讓學生進一步欣賞豐富多彩的圖形世界,看到更多的立體圖形與平面圖形,初步了解立體圖形與平面圖形之間的關系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段、角以及直線的兩種最常見的位置關系——相交與平行。線段與角是兩種最基本的圖形,它們在周圍隨處可見,和人們的生活和生產實踐密切相關。在今後的幾何學習中幾乎所有問題都會涉及線段和角,熟練掌握有關線段和角的知識和技能是學好幾何的一個十分重要的起點。本章教材的編寫注意從學生已有的生活經驗和已有的知識出發,給學生提供「現實的、有意義的、富有挑戰性的」學習材料,引導他們在「做數學」的活動中,在自主探索的過程中獲得知識和技能。在實際教學時,教師要利用這些探究點,鼓勵學生勤思考、勤動手、多交流。引導學生從開始階段的先動手、後思考,逐步過渡到先思考、後動手驗證。 教學重點:線段和角。教學難點:正確應用幾何語言基本圖形進行分析、判斷和表述,需要一個較長的過程。

❻ 五四制初中數學教材知識框架總結

初一、初二知識點
有理數
1.1 正數和負數 π是無理數
1.5.1
有理數的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。



求n個相同的因數的積的運算叫做乘方。
一般地,在 a^n 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:

1.5.2 科學記數法
一個大於10的數可以表示成a×10n的形式,即有其中1≤a<10,n是比A的整數部分的位數少1的正整數。這種記數方法叫做科學記數法。
1.5.3 近似數和有效數字
一般的,一個近似數四捨五入到哪一位,就說這個數精確到哪一位;這時從左邊第一個不是0的數字起,到末尾數字止,所有的數字都叫這個數的有效數字。
對於科學記數法表示的數,規定它的有效數字就是a中的有效數字。

第二章
一元一次方程
2.1.2 等式的性質
用等號表示相等關系的式子叫做等式。我們用a=b表示一般的等式。
等式性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式性質2:等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
等式的補充性質:對稱性和傳遞性
如果a=b,那麼b=a;
如果a=b,b=c,那麼a=c。
方程:含有未知數的等式。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
將這個數分別帶入原方程的左右兩邊,看這個值能否使方程的兩邊相等。
一、一元一次方程、等式的概念
二、一元一次方程的解法:
去分母、去括弧、移項、合並同類項和系數化一
合並同類項復習
一、 書寫要求
數字與數字相乘,用乘號;數字與字母或字母與字母相乘,乘號省略不寫
數字與字母或括弧相乘時,數字在前
除號寫成分數線,分數線有括弧作用
帶分數應化成假分數
代數式是和或差的形式,並且有單位,代數式應加括弧
二、 列代數式
1、 除以a^2+b 的商是5x的數
2、 減少20%後是a的數
3、 三個連續奇數,中間的一個是2n+3,表示這三個數的立方和。
三、 同類項:所含字母相同,相同字母的指數也相同的項。
所有常數項都是同類項。
合並同類項:同類項的系數相加,結果作為系數,字母和字母的指數不變。
4、若4a^(m^2-1)b^2/5與3a^3b^(n-m)能夠合並,則m=±2,n=4或0
四、添、去括弧
五、化簡求值
工程問題:工作總量=工作效率×工作時間
現實生活問題
1、利潤問題
(1+提價或降價的百分數) 原價=現價;
利潤=售價-進價

2、儲蓄問題
本息和=本金+利息
利息=本金 利率 期數(每個期數內的利息與本金的比叫做利率)
從1999年我國開始對利息徵收20%的個人所得稅,
實得利息=(1-20%) 利息
3、球賽積分問題
4、納稅問題
5、交通問題
6、最優方案問題

3.1.2點、線、面、體
通過兩點的直線只有一條
兩點之間線段最短
等角的補角等,等角的餘角等
過一點有且只有一條直線與已知直線垂直。
垂線段最短
注意問題:
1、 在表示直線、射線、線段時,一定要先寫出文字。
2、 注意延伸與延長的區別,延長與反向延長的區別,延長線要用虛線
3、 注意定義的准確性。本章重要定義:兩點距離、角、中點、角平分線
4、 注意相似圖形的區別:直線與平角,射線與周角
5、 注意點、線、角的表示法,區分大小寫及字母順序
6、 作圖要用鉛筆尺子。尺規作圖要保留痕跡,並寫結論。
7、 論述題要寫推理步驟:題目中的已知作為因為,由已知推理得到的作為所以。
8、 注意區分中點,角平分線三種形式的選取。
9、 注意分類討論。依靠圖形把情況想全面。
10、圖形的折疊與展開可動手實踐。
一 平行線的性質定理:
• 兩直線平行,同位角相等。
• 兩直線平行,內錯角相等 。
• 兩直線平行,同旁內角互補 。
同位角相等
內錯角相等 兩直線平行
同旁內角互補
同位角相等
兩直線平行 內錯角相等
同旁內角互補

如果一個角的兩邊分別平行於另一角的兩邊,則這兩個角相等或互補

第九章 不等式與不等式組
移項要變號
1、 用不等號連接表示不等關系的式子叫不等式。
2、 不等式的基本性質:
性質1:不等式兩邊都加上(或減去)同一個數或式子,不等號方向不變。
性質2:不等式兩邊都乘(或除以)同一個正數,不等號方向不變。
性質3:不等式兩邊都乘(或除以)同一個負數,不等號方向改變。
互逆行:若a>b,則b<a
傳遞性:若a>b, b>c,則a>c
3、 使不等式成立的每一個未知數的值叫不等式的解。
不等式的所有解叫不等式的解集。解集是范圍,解是具體的數。
4、 解集在數軸上的表示:兩定
一定邊界點:含於解集為實心點;不含於解集為空心點
二定方向:大於向右,小於向左
5、 一元一次不等式的解法:去分母、去括弧、移項變號、合並同類項(化成ax>b或ax<b的形式)、系數化一(當系數是負數時,注意變號)
6、 幾個一元一次不等式的解集的公共部分叫一元一次不等式組的解集。
解法:分別解,再求解集。
同大取大;同小取小;大小取中;矛盾無解
注意:解集用小於連接。例:-2<x<3
7、 應用題:
注意超過、不小於、不大於、至少、最多等關鍵字。
注意隱含條件。
注意設法:不寫「至少」
一元一次不等式:
1、不等式的性質(尤其是性質三)
2、會解不等式(組),利用數軸找解集(不等式組要寫解集再取整數解,數軸要有原點、箭頭),應用題(注意關鍵字,是否帶等號)。

第七章 三角形
一、用不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
二、三角形中的三條重要線段:
1、三角形的角平分線
2、三角形的中線
3、三角形的高線
要求掌握: 定義、書寫格式、畫法(鈍角三角形)、交點結論
三、三角形三邊關系定理及推論
兩邊差<第三邊<兩邊和
三角形具有穩定性,而四邊形沒有
四、三角形的分類:按邊分和按角分
五、三角形內角和
三角形的內角和等於180°。
定理證明、書寫、例題(整體思想和方程思想)
在△ABC中,∵∠A+∠B+∠C=180°
六、三角形的外角
1、三角形的一邊與另一邊的延長線組成的角。
2、三角形的一個外角等於與它不相鄰的兩個內角的和。
3、三角形的一個外角大於與它不相鄰的任何一個內角。
書寫:∵∠ADB是△ADC的外角
∴∠ADB=∠C+∠DAC
∴∠C=∠ADB-∠DAC
七、多邊形
1、對角線:
2、n邊形的內角和等於(n-2)180°
3、多邊形的外角和等於360°,與邊數無關
4、各個角都相等,各條邊都相等的多邊形叫正多邊形。
八、正多邊形中,只有正三角形、正方形、正六邊形可以用來鑲嵌。
注意:畫圖用鉛筆,要准確,標明字母,寫結論
方位角、用三個字母表示角。
輔助線及延長線是虛線。
常用方法:分類討論思想、方程思想
整體思想、見比設份數

三角形:
1、三角形三邊關系定理,第三邊的范圍。
2、掌握三角形中三條重要線段的定義、推理形式、畫法(鉛筆、標字母、寫結論)。
3、三角形內角和定理,嚴格推理形式。
4、三角形外角定理及推論,嚴格推理形式。
5、多邊形的內角和及外角和定理,會構造方程。
6、鑲嵌:任意三角形、四邊形和正六邊形可鑲嵌。
7、會寫四步以內幾何推理。不用寫理由。

第十章 實數
1、算術平方根:一個正數的平方等於a,即x2=a,那麼正數x叫做a的算術平方根。
(算術平方根的取值范圍)
(被開方數的取值范圍,使式子有意義)
2、平方根:如果一個數的平方等於a,即x2=a,那麼x叫做a的平方根。
3、正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根。
4、求一個數的平方根的運算叫開平方。平方與開平方互為逆運算。
5、立方根:如果一個數的立方等於a,即x3=a,那麼x叫做a的立方根。
6、正數有一個正的立方根;負數有一個負的立方根;0的立方根是0。
7、求一個數的立方根的運算叫開立方。立方與開立方互為逆運算。
8、無限不循環小數叫無理數。
三類數:含 的式子;開不盡方根的數;類似循環實際不循環的小數
9、有理數和無理數統稱實數。實數還可分為正數、0、負數 注意:分數都是有理數
10、實數與數軸上的點一一對應。
11、實數的絕對值、相反數、倒數的概念與有理數中相同。
12、實數的近似值 。會比較兩數大小
會背1到20的平方,1到10的立方

第六章 平面直角坐標系
1、平面直角坐標系的概念:
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系.
水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸為y軸或縱軸,取向上方向為正方向;
兩個坐標軸的交點為平面直角坐標系的原點。
2、點的坐標:有序實數對
(1)點p(a,b)到x軸的距離為︱b︱
點p(a,b)到y軸的距離為︱a︱
(2)x軸上的點縱坐標為0
在x軸上方的點縱坐標大於0
在x軸下方的點縱坐標小於0
(3)y軸上的點橫坐標為0
在y軸右方的點橫坐標大於0
在y軸左方的點橫坐標小於0
(4)平行於x軸的直線上的點的縱坐標相同
平行於y軸的直線上的點的橫坐標相同
(5)在第一三象限角平分線上的點的橫、縱坐標相等
在第二四象限角平分線上的點的橫、縱坐標相反
3、用坐標表示平移:
(1)在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x + a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y + b)(或(x,y - b)).
(2)在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向 左(或向右)平移a個單位長度;
在平面直角坐標系內,如果把一個圖形各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
4、建立直角坐標系表示點的位置
5、坐標平面內的點與有序實數對一一對應。
注意:建立坐標系要完整。用鉛筆畫圖,畫圖不整潔要扣分。

圖形的這種移動叫平移變換,簡稱平移。
1、平移的兩條基本特徵;
2、圖形的移動為平移變換的重要標志:
圖形在移動的過程中,
自身的形狀和大小沒有發生變化
自身的方向始終沒有發生變化
3、數學與實際生活息息相關。

第十一章 一次函數
1、 常量與變數;(非重點)
2、 函數概念;(非重點)
3、掌握自變數的取值范圍:
使解析式有意義:分母不為0;二次根號下的式子有非負性
使實際問題有意義:注意邊界點及是否要取整
4、 函數的三種表示方法:解析法、列表法、圖像法
5、點在函數圖像上(函數圖像過這個點) 點的坐標滿足函數解析式
6、正比例函數概念:y=kx (k是不為0的常數)
圖像:過原點的一條直線
性質:k>0 直線過第一、三象限,y隨x的增大而增大
k<0 直線過第二、四象限,y隨x的增大而減小
7、一次函數概念:y=kx+b(k,b為常數,k不為0)
正比例函數是特殊的一次函數
圖像:一條直線
性質:k>0 ,y隨x的增大而增大
k<0 ,y隨x的增大而減小
b>0 直線與y軸交於正半軸
b<0 直線與y軸交於負半軸
b=0 直線過原點即為正比例函數
k相同的直線可互相平移得到
(k,b與一次函數圖像之間的關系見筆記)
注意:畫一次函數圖像時,只需找兩點即可
步驟:列表、描點、連線
8、用函數分析方程和不等式;
會求函數值,會求兩個函數的交點坐標,並會比較兩個函數的大小關系(會識圖);給出y(或x)的范圍會求x(或y)的范圍.
9、求函數解析式:用待定系數法求解析式;利用圖形找點求解析式
10、會看分段函數圖像
重點:變數與函數知識的掌握要突出討論意識。
函數的概念、性質、應用都應該強調討論;運用函數圖象進行的討論

《數據》復習
一.本章知識結構
本章共有三小節內容。
第1小節「幾種常見的統計圖表」主要在已經學過的條形圖、折線圖和扇形圖等統計圖的基礎上,進一步認識這幾種常見的統計圖,並引進一種新的統計圖——頻數分布直方圖;
第2小節「用圖表描述數據」包含兩層含義:根據問題選擇適當的統計圖來描述數據和學習製作統計圖表的方法;
第3小節「課題學習」旨在讓學生綜合利用已學的統計知識和方法從事統計活動,經理收集、整理、描述和分析數據的基本過程。
二、.課程學習目標
1. 進一步認識條形圖、折線圖、扇形圖,掌握它們各自的特點;
2. 會畫扇形圖,會用扇形圖描述數據;
3. 理解頻數的概念,了解頻數分布的意義和作用;
4.根據需要對數據進行適當分組;會列頻數分布直方圖和頻數折線圖,並會用它們描述數據。
5.感受統計在生產生活中的作用,建立統計觀念,培養實事求是的科學態度

 數據收集的過程一般包括:明確調查問題、確定調查對象、選擇調查方法、展開調查、記錄結果。
 表示數據的兩種方法:
1、利用統計表
2、利用統計圖:條形圖、折線圖、扇形圖

全等三角形
一、課程學習目標
1、了解全等三角形的概念和性質,能夠准確的辨認全等三角形的對應元素。
2、探索三角形全等的條件,能利用三角形全等進行證明。
3、會做角的平分線,了解角平分線的性質,會利用角平分線的性質進行證明。
二、知識內容小結
13.1 全等三角形
1、定義: 能夠完全重合的兩個三角形叫做全等三角形。
相關概念:對應頂點、對應邊、對應角
2、全等三角形的性質:
全等三角形的對應邊相等
全等三角形的對應角相等
結論:經過平移、翻折、旋轉前後的圖形全等。
13.2 三角形全等的條件
「邊邊邊」(SSS):
三邊對應相等的兩個三角形全等
「邊角邊(SAS):
兩邊和它們的夾角對應相等的兩個三角形全等。
「角邊角」(ASA):
兩角和它們的夾邊對應相等的兩個三角形全等。
「角角邊」(AAS):
兩個角和其中一個角的對邊對應相等的兩個三角形全等。
「斜邊直角邊」(HL):
在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等。
13.3 角平分線的性質
角平分線的尺規畫法。
角平分線的性質:角的平分線上的點到角的兩邊的距離相等。
角平分線的判定:到角的兩邊距離相等的點在角的平分線上。
結論:三角形的三條角平分線相交於一點,該點到三角形三條邊的距離相等。
三、復習建議
1、通過證明兩個三角形全等從而得到邊等、角等的關系是一種常用的方法。在初學證明兩個三角形全等時,讓學生養成良好的書寫習慣是十分必要的。所以我們應要求學生把對應頂點字母寫在對應位置上,書寫格式一定要規范。
如:已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?

2、用「三找」模式證明三角形全等。
一找已知,最好在圖中標注出來;
二找隱含,通過圖形語言告訴的已知,如公共角是對應角,公共邊是對應邊,對頂角是對應角。
三找欠缺,根據題目中的已知條件證明欠缺條件。
3、及時幫助學生進行小結。將零散的知識概念進行整理,形成系統和網路是學生學習過程中很重要的一環,教師要有意識進行引導。如:已知兩個三角形全等,除了書上給出的全等三角形的對應邊相等;對應角相等以外,能夠得到的常用結論有:全等三角形對應邊上的中線、高相等;對應角的平分線相等;周長相等;面積相等。
再如判斷三角形全等的方法有五個,如何選擇這些方法呢?建議教師可以以表格形式給出如下小結:
已 知 可選用的方法
兩邊對應相等 SAS、SSS
兩角對應相等 AAS、ASA
一邊和一角對應相等 ASA、AAS、SAS
判斷兩個直角三角形全等,首先考慮使用HL,除此以外還可以考慮使用SAS、AAS、ASA
4、應重視所學內容在生活中的實際應用,培養學生學以致用的意識。
用三角形全等可以說明實際測量方法的道理,例如,測量池塘兩端的距離,測量河兩岸相對兩點的距離,用卡鉗測量工件的內槽寬,還安排了利用三角形全等測量旗桿高度的數學活動。
5、中考創新題。
一、補充條件型;
例:已知AB=AC,如果要判定△ADC≌△AEB,需添加條件__________

二、探索結論型;
例:如圖,已知AB∥DE,AB=DE,AF=DC,請問途中有哪幾對全等三角形?並任選一對給與證明。

三、編擬命題型
例: 在△AFD和△CEB中,點A,E,F,C在同一條直線上,有下面四個論斷:
(1) AD=CB(2)AE=CF(3)∠B=∠D(4)AD∥BC
請用其中三個作為條件,餘下一個作為結論,編一道數學問題,並寫出解答過程。
已知:_______________________________________________________
求證:______________________
證明:
四、易錯問題及應注意的問題
1、判定兩個直角三角形全等時,學生易將HL與SAS弄混。
有不少學生在判斷兩個直角三角形全等時,只要找到兩條邊對應相等就認為是HL定理。所以提醒學生注意,分清所找的邊是關鍵。如果找到的是兩條直角邊對應相等,使用的定理是SAS,一條斜邊和一條直角邊對應相等,使用的定理才是HL。
2、注意引導學生關注典型反例。
如:有兩邊和其中一邊上的高線對應相等的兩個三角形全等。
有兩邊和第三邊上的高線對應相等的兩個三角形全等。
這兩個命題均為假命題,但學生及易犯錯,原因是學生易忽略鈍角三角形高在三角形外的情況。
再如: AAA, SSA不成立的反例圖:

DE∥BC AD=AC
3、注意角平分線性質性質和判定定理的使用條件,記住典型圖形,線段CD或BD為常添輔助線。

4、有多個垂直關系時,常用等角的餘角等證明角等。

有一條對稱軸——直線
圖形沿軸對折(翻轉180°)
翻轉後和另一個圖形重合

整式
冪的乘方
運算順序:
1)先乘方,再乘除,最後加減
2)同級運算,從左到右進行
3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。



求n個相同的因數的積的運算叫做乘方。
一般地,在 中,a 取任意有理數,
n 取正整數。
冪的符號法則:
正數的任何次冪都是正數;
負數的奇次冪是負數;
負數的偶次冪是正數;
零的任何次冪都是零。
注意:當底數是負數或分數時,書寫時要把整個負數或分數用括弧括起來。
知識擴展:

分式
分清「且」「或」
約分:約去公因式
分子分母為乘積形式才可約分
分式方程要檢驗
去分母別漏乘常數項
移項要變號
不能假檢驗
分式方程應用題要雙驗

勾股定理
1、勾股定理 注意:前提在直角三角形中
會利用定理進行邊的計算 a2+b2 =c2
2、勾股定理的證法 書或課件或新學案43頁
3、勾股逆定理 注意:哪個角是直角(最大邊所對角)
會用逆定理判定直角三角形
4、會寫逆命題:題設與結論與原命題相反
5、常用勾股數:
3k,4k,5k; 5k,12k,13k;
7,24,25; 8,15,17; 9,40,41
6、常用輔助線:構造直角三角形
7、注意勾股定理及逆定理的書寫格式
8、 已知直角三角形兩邊求第三邊
(分類討論)
已知兩直角邊求斜邊上的高
(雙垂直圖形,等積式)
9、含30º角的直角三角形三邊比為 1:2:
等腰直角三角形三邊比為 1:1:
10、勾股定理常作為列方程的隱含條件

四邊形復習

項目
四邊形 對邊 角 對角線 對稱性
平行四邊形
矩形
菱形
正方形
等腰梯形

四邊形 條件
平行
四邊形 1、定義:兩組對邊分別平行
2、兩組對邊分別相等
3、一組對邊平行且相等
4、兩組對角分別相等
5、對角線互相平分

矩形 1、定義:有一個角是直角的平行四邊形
2、三個角是直角的四邊形
3、對角線相等的平行四邊形

菱形 1、定義:一組鄰邊相等的平行四邊形
2、四條邊都相等的四邊形
3、對角線互相垂直的平行四邊形

正方形 1、定義:一組鄰邊相等且有一個角是直角的平行四邊形
2、有一組鄰邊相等的矩形
3、有一個角是直角的菱形

等腰梯形 1、兩腰相等的梯形 2 、在同一底上的兩角相等的梯形 3、對角線相等的梯形(結論)

順次連接四邊形各邊中點所得圖形為平行四邊形
順次連接對角線相等的四邊形各邊中點所得圖形為菱形
順次連接對角線互相垂直的四邊形各邊中點所得圖形為矩形
順次連接對角線相等且垂直的四邊形各邊中點所得圖形為正方形
1、連接對角線
2、構造平行四邊形
3、軸對稱圖形,對稱軸上任一點與對稱點的連線相等。
4、直角三角形中,有斜邊中點,常作斜邊中線
5、梯形:做高、平移腰、平移對角線(對角線垂直時)
輔助線要寫在證明第一行,用虛線,交代新添字母位置
本章常用定理
等腰三角形三線合一 中垂線定理

反比例函數復習
1、 定義: (k是不為0的常數)
y是x的反比例函數 y與x成反比例 y=kx-1
2、 自變數x≠0 函數y≠0
3、 反比例函數圖像是雙曲線
4、 當k>0時,圖像在第一、三象限,在每一個象限內,y隨x的增大而減小;
當k<0時,圖像在第二、四象限,在每一個象限內,y隨x的增大而增大.
注意:增減性取決於k,與x無關。

K<0
5、 兩條雙曲線既是中心對稱圖形(關於原點對稱),又是軸對稱圖形(對稱軸是y=x和y=-x)。
兩分支無限接近坐標軸,但不與坐標軸相交。
|k|越大,圖像離坐標原點越遠。
6、 反比例函數 與正比例函數y=k2x
當k1k2同號時,兩交點關於原點對成;異號時無交點。
7、實際問題中,自變數取值通常為正,圖像通常在第一象限。
8、必會題型:
1) 待定系數法求函數解析式
提醒:設兩個函數解析式要區分k
2) 面積問題 S矩形=|k| S三角形= |k|
3) 比較函數值

4)會比較一次函數與反比例函數大小
5)會求一次函數與反比例函數交點坐標
本章約佔10分,有一道6分解答題,為一次函數與反比例函數綜合題
4)

根據圖象寫出使反比例函數的值大(小)於一次函數的值的x的取值范圍。

中位數定義:
一組數據按大小順序排列,位於最中間的一個數據

叫做這組數據的中位數

1.求中位數要將一組數據按大小順序,顧名思義,中位數就是位置
處於最中間的一個數(或最中間的兩個數的平均數),排序
時,從小到大或從大到小都可以.
2.眾數是一組數據中出現次數最多的數據,是一組數據中的原數據,而不是相應的次數.眾數有可能不唯一,注意不要遺漏.
鞋店老闆一般最關心眾數
公司老闆一般以中位數為銷售標准
裁判一般以平均數為選手最終得分

3.中位數只需很少的計算,不受極端值的影
響,這在有些情況下是一個優點.

一元二次方程

注意:
1、判斷是否為一元二次方程要先化為一般形式再判斷。未知數出現在分母或根號中的方程不是一元二次方程。
2、ax2+bx+c=0是否為一元二次方程只與a有關,與b,c無關。
3、各項系數及常數項相對於一般形式而言,而且注意前面符號。
形如 x2=k或a(x-m)2=k的方程可利用開平方法求解。
注意a和k對方程解的影響

一元二次方程根的判別式

應用:不解方程判斷根的情況;給出根的情況,求待定系數的值或范圍。

注意:1、與幾何知識的綜合運用
2、注意方程中的字母
這里要特別注意:在列一元二次方程解應用題時,由於所得的根一般有兩個,所以要檢驗這兩個根是否符合實際問題的要求

在平面內,將一個圖形繞一個定點旋轉一定的角度,這樣的圖形變換叫做圖形的旋轉.這個定點叫旋轉中心.旋轉的角度稱為旋轉角
圖形的旋轉不改變圖形的形狀、大小,只改變圖形的位置.

旋轉中心在對應點連線的垂直平分線上。
性質1 關於中心對稱的兩個圖形是全等形。
性質2 關於中心對稱的兩個圖形,對稱點的連線都經過對稱中心,並且被對稱中心平分。
如果兩個圖形的對應點連成的線段都經過某一點,並且被該點平分,那麼這兩個圖形一定關於這一點成中心對稱。

❼ 八上數學勾股定理知識結構圖

1.勾股定理:

文字表述:直角三角形兩直角邊的平方和等於斜邊的平方

數學表達:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a2+b2=c2。

2.勾股定理的證明:用三個正方形的面積關系進行證明。

3.勾股定理逆定理:如果三角形的三邊長滿足兩邊長的平方和等於另一邊的平方,那麼這個三角形是直角三角形。滿足的三個正整數稱為勾股數。

❽ 初二數學上學期知識點和典型例題總結

全等三角形

一、知識框架: