當前位置:首頁 » 基礎知識 » 常州初中數學知識點大全
擴展閱讀

常州初中數學知識點大全

發布時間: 2022-07-31 14:18:45

㈠ 初中數學中考復習知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

二、銳角三角比(2個考點)

考點5:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點6:解直角三角形及其應用

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點7:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點8:用待定系數法求二次函數的解析式

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點9:畫二次函數的圖像

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點10:二次函數的圖像及其基本性質

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

四、圓的相關概念(6個考點)

考點11:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點12:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點13:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點14:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點15:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

五、數據整理和概率統計(9個考點)

考點16:確定事件和隨機事件

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點17:事件發生的可能性大小,事件的概率

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點18:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點19:數據整理與統計圖表

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點20:統計的含義

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點21:平均數、加權平均數的概念和計算

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點22:中位數、眾數、方差、標准差的概念和計算

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點23:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點24:中位數、眾數、方差、標准差、頻數、頻率的應用

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。

㈡ 初中數學基礎知識點有哪些

初中數學基礎知識大全:直角坐標系與點的位置
1. 直角坐標系中,點A(3,0)在y軸上。
2. 直角坐標系中,x軸上的任意點的橫坐標為0。
3. 直角坐標系中,點A(1,1)在第一象限。
4. 直角坐標系中,點A(-1,1)在第二象限。
5. 直角坐標系中,點A(-1,-1)在第三象限。
6. 直角坐標系中,點A(1,-1)在第四象限。
初中數學基礎知識大全:特殊三角函數值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中數學基礎知識大全:圓的基本性質
1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等於圓心角的一半。
6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。
8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。
10.經過圓心平分弦的直徑垂直於弦。

㈢ 初中數學常考知識點有哪些

1、一元二次方程的基本概念
一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐標系與點的位置,特殊三角函數值,圓的基本性質,直線與圓的位置關系等等。
2、一元二次方程
只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程
。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項系數;bx叫作一次項,b是一次項系數;c叫作常數項。
3、特殊三角函數
特殊三角函數值一般指在30°,45°,60°等角的三角函數值。這些角度的三角函數值是經常用到的。並且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。cos30°=1,tan45°=1。
4、圓的基本性質
半圓或直徑所對的圓周角是直角。
任意一個三角形一定有一個外接圓。
在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
在同圓或等圓中,相等的圓心角所對的弧相等。
同弧所對的圓周角等於圓心角的一半。
同圓或等圓的半徑相等。
過三個點一定可以作一個圓。
長度相等的兩條弧是等弧。
在同圓或等圓中,相等的圓心角所對的弧相等。
經過圓心平分弦的直徑垂直於弦。

㈣ 初中所有數學公式,知識點

中考數學公式定理
點線角定理:
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
平行定理:
經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
平行性質:
1、同位角相等,兩直線平行
2、內錯角相等,兩直線平行
3、同旁內角互補,兩直線平行
平行推論:
1、兩直線平行,同位角相等
2、兩直線平行,內錯角相等
3、兩直線平行,同旁內角互補
三角形內角定理:
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
推論1:直角三角形的兩個銳角互余
推論2:三角形的一個外角等於和它不相鄰的兩個內角的和
推論3:三角形的一個外角大於任何一個和它不相鄰的內角
全等三角形判定定理:
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線定理:
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形的性質定理:
等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,並且每一個角都等於60°
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等 角對等邊)
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角等於60°的等腰三角形是等邊三角形
對稱定理
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理:
定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
判定定理:直角三角形斜邊上的中線等於斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a²+b²=c²。
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a²+b²=c²,那麼這個三角形是直角三角形。
多邊形內角和定理:
定理:四邊形的內角和等於360°;四邊形的外角和等於360°
多邊形內角和定理:n邊形的內角的和等於(n-2)×180°
推論:任意多邊的外角和等於360°
平行四邊形定理:
平行四邊形性質定理1:平行四邊形的對角相等
2:平行四邊形的對邊相等
3:平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
2:兩組對邊分別相等的四邊形是平行四邊形
3:對角線互相平分的四邊形是平行四邊形
4:一組對邊平行相等的四邊形是平行四邊形
矩形的定理
性質:1:矩形的四個角都是直角
2:矩形的對角線相等
判定:1:有三個角是直角的四邊形是矩形
2:對角線相等的平行四邊形是矩形
菱形性質定理
1:菱形的四條邊都相等
2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理
1:四邊都相等的四邊形是菱形
2:對角線互相垂直的平行四邊形是菱形
正方形定理:
正方形性質定理1:正方形的四個角都是直角,四條邊都相等
2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱定理:
定理1:關於中心對稱的兩個圖形是全等的
2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
等腰梯形性質定理:
等腰梯形性質定理:1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
中位線定理
三角形:三角形的中位線平行於第三邊,並且等於它的一半
梯形:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2 S=L×h
相似三角形定理:
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
3:三邊對應成比例,兩三角形相似(SSS)

相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
相似性質:
1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
2:相似三角形周長的比等於相似比
3:相似三角形面積的比等於相似比的平方
三角函數定理:
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
圓的定理:
1.不共線的三點確定一個圓,經過一點可以作無數個圓,經過兩點也可以作無數個圓,且圓心都在連結這兩點的線段的垂直平分線上
定理:過不共線的三個點,可以作且只可以作一個圓
推論:三角形的三邊垂直平分線相交於一點,這個點就是三角形的外心
三角形的三條高線的交點叫三角形的垂心
2.垂徑定理
圓是中心對稱圖形;圓心是它的對稱中心,圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸
定理:垂直於弦的直徑平分這條弦,並且評分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直評分弦,並且平分弦所對的另一條弧
3.弧、弦和弦心距
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
4.圓與直線的位置關系
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離
如果一條直線和一個圓只有一個公共點,我們就說這條直線和這個圓相切,這條直線叫做圓的切線,這個公共點叫做它們的切點
定理:經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線
定理:圓的切線垂直經過切點的半徑
推論1:經過圓心且垂直於切線的直線必經過切點
推論2:經過切點且垂直於切線的直線必經過圓心
如果一條直線和一個圓有兩個公共點,我們就說,這條直線和這個圓相交,這條直線叫這個圓的割線,這兩個公共點叫做它們的交點
直線和圓的位置關系只能由相離、相切和相交三種
5.三角形的內切圓
如果一個多邊形的各邊所在的直線,都和一個圓相切,這個多邊形叫做圓的外切多邊形,這個圓叫做多邊形的內切圓
定理:三角形的三個內角平分線交於一點,這點是三角形的內心
6.切線長定理
定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
7.圓的外切四邊形
定理: 圓的外切四邊形的兩組對邊的和相等
定理:如果四邊形兩組對邊的和相等,那麼它必有內切圓
8.兩圓的位置關系
在平面內,不重合的兩圓它們的位置關系,有以下五種情況:外離、外切、相交、內切、外切
經過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距
定理:兩圓的連心線是兩圓的對稱軸,並且兩圓相切時,它們切點在連心線上
(1)兩圓外離d>R+r (2)兩圓外切d=R+r
(3)兩圓相交R-rr) (4)兩圓內切d=R-r(R>r)
(5)兩圓內含dr)
特殊情況,兩圓是同心圓d=0
9.兩圓的公切線
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等
比例性質定理:
(1)比例的基本性質
如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
(2)合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
(3)等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

中考數學必備公式
圓與弧的公式:
正n邊形的每個內角都等於(n-2)×180°/n
弧長計算公式:L=n兀R/180
扇形面積公式:S扇形=n兀R^2/360=LR/2
①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-rr)④兩圓內切d=R-r(R>r)⑤兩圓內含dr)
定理:相交兩圓的連心線垂直平分兩圓的公共弦
定理:把圓分成n(n≥3):⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
因式分解公式:
公式:a^3+b^3+c^3-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
解:a^3+b^3+c^3-3abc
=(a+b)(a^2-ab+b^2)+c(c^2-3ab)
=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)
=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]
=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)
=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a²+2ab+b²
完全平方差公式: (a-b)平方=a²-2ab+b²
兩根式: ax²+bx+c=a[x-(-b+√(b²-4ac))/2a][x-(-b-√(b²-4ac))/2a]兩根式
立方和公式: a^3+b^3=(a+b)(a²-ab+b²)
立方差公式:a^3-b^3=(a-b)(a²+ab+b²)
完全立方公式: a^3±3a²b+3ab²±b^3=(a±b)^3.
一元二次方程公式與判別式:
一元二次方程的解 -b+√(b²-4ac)/2a ,-b-√(b²-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b²-4ac=0 註:方程有兩個相等的實根
b²-4ac>0 註:方程有兩個不等的實根
b²-4ac<0 註:方程沒有實根,有共軛復數根
三角不等式:
|a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|
等差數列公式:
某些數列前n項和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

三角函數公式--兩角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
三角函數公式--倍角公式:
tan2A=2tanA/(1-tan2A)
cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a
三角函數公式--半形公式:
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
三角函數公式--和差化積:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) 2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos(A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

http://www.exam8.com/zhongkao//shuxue/201304/2595337.html

㈤ 初中數學知識大全

初中數學知識大全知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2. 3.一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7. 4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。 2.直角坐標系中,x軸上的任意點的橫坐標為0. 3.直角坐標系中,點A(1,1)在第一象限. 4.直角坐標系中,點A(-2,3)在第四象限. 5.直角坐標系中,點A(-2,1)在第二象限.
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=32x的值為1. 2.當x=3時,函數y=2
1x的值為1.
3.當x=-1時,函數y=3
21x的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數. 2.函數y=4x+1是正比例函數. 3.函數xy2
1是反比例函數. 4.拋物線y=-3(x-2)2-5的開口向下. 5.拋物線y=4(x-3)2-10的對稱軸是x=3. 6.拋物線2)1(2
12xy的頂點坐標是(1,2).
7.反比例函數x
y2

的圖象在第一、三象限. 知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10. 2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
知識點6:特殊三角函數值
1.cos30°=
2
3. 2.sin260°+ cos260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.
5.cos60°+ sin30°= 1.

2
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角. 2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓. 4.在同圓或等圓中,相等的圓心角所對的弧相等. 5.同弧所對的圓周角等於圓心角的一半. 6.同圓或等圓的半徑相等. 7.過三個點一定可以作一個圓. 8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等. 10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切. 2.三角形的外接圓的圓心叫做三角形的外心. 3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心. 5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線. 7.垂直於半徑的直線是圓的切線. 8.圓的切線垂直於過切點的半徑.
知識點9:圓與圓的位置關系
1.兩個圓有且只有一個公共點時,叫做這兩個圓外切. 2.相交兩圓的連心線垂直平分公共弦.
3.兩個圓有兩個公共點時,叫做這兩個圓相交. 4.兩個圓內切時,這兩個圓的公切線只有一條. 5.相切兩圓的連心線必過切點.
知識點10:正多邊形基本性質
1.正六邊形的中心角為60°. 2.矩形是正多邊形.
3.正多邊形都是軸對稱圖形. 4.正多邊形都是中心對稱圖形
http://wenku..com/link?url=--01C9SsdOSENF6gyASQ5lzgXTGvu_xir8R8sm 這裡面有你要的

㈥ 初中數學知識點歸納

數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!

學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:

積極做題

二:考試時的技巧

如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.

以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且了解題型的技巧.

㈦ 數學初中全部重要知識點有哪些

數學初中全部重要知識點:

一、一元一次方程

1、只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3、一元一次方程解法的一般步驟:整理方程、去分母、去括弧、移項、合並同類項、系數化為1。

二、解一元二次方程的步驟

1、配方法的步驟

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式。

2、分解因式法的步驟

把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

3、公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c。

4、韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a。

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用。

5、一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diaota」,而△=b2-4ac,這里可以分為3種情況:

(1)當△>0時,一元二次方程有2個不相等的實數根。

(2)當△=0時,一元二次方程有2個相同的實數根。

(3)當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)。

三、有理數

1、定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2、數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3、相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5、有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

6、有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0。例:0×1=0。

7、有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

㈧ 初中數學內容有哪些

初中數學主要包含代數和幾何兩部分。

數與代數知識點主要包括有理數、實數、代數式、整式、分式、一元一次方程、二元一次方程(組)、一元二次方程、一元一次不等式(組)、一次函數、反比例函數、二次函數等。

幾何部分知識點包括線段、角、相交線、平行線 、三角形 、四邊形 、相似形 、圓等。

代數部分主要包含:

實數,代數式(整式,二次根式),方程(一元一次方程,二元一次方程組,一元二次方程,分式方程),不等式,函數(正比例函數,一次函數,反比例函數,二次函數)。

幾何部分主要包含:

幾何初步(線以角,平行線),三角形(三角形認識及性質,直角三角形,等腰三角形,全等三角形,相似三角形,銳角三角函數),四邊形(平行四邊形,矩形,菱形,正方形),圓,立體圖形基礎,圖形三大變化(平移,旋轉,對稱)。

㈨ 初中數學的知識點有哪些

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

㈩ 初中數學知識有哪些簡單概括

知識點1:一元二次方程的基本概念
知識點2:直角坐標系與點的位置
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數.
2.函數y=4x+1是正比例函數.
4.拋物線y=-3(x-2)2-5的開口向下.
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2).
7.反比例函數的圖象在第一、三象限.
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3
知識點6:特殊三角函數值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角.
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓.
4.在同圓或等圓中,相等的圓心角所對的弧相等.
5.同弧所對的圓周角等於圓心角的一半.
6.同圓或等圓的半徑相等.
7.過三個點一定可以作一個圓.
8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等.
10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切.
2.三角形的外接圓的圓心叫做三角形的外心.
3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心.
5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線.
7.垂直於半徑的直線是圓的切線.
8.圓的切線垂直於過切點的半徑.