當前位置:首頁 » 基礎知識 » 小學六年數學知識點精簡
擴展閱讀
如何找到同學問題 2024-11-02 22:17:58
如何從中醫基礎到臨床 2024-11-02 22:14:30

小學六年數學知識點精簡

發布時間: 2022-07-31 04:19:53

❶ 小學都有哪些數學知識點。(北師大版 六年級上冊)要詳細的!

北師大版六年級上冊數學的知識點教學目標(供參考)





內容
知識技能
數學素養

數與代數
數的運算
能計算實際問題中「增加百分之幾」或「減少百分之幾」。
體會百分數與現實生活的密切聯系,提高運用數學解決實際問題的能力;通過觀察、分析、歸納、類比與猜測、驗證,發展初步的合情推理,體驗數學問題的探索性和挑戰性。

能解決「比一個數增加百分之幾的數」或「比一個數減少百分之幾的數」。

能用方程解決有關百分數的逆解題。

解決與儲蓄有關的實際問題。

比的認識
理解比的意義及其與除法、分數的關系,會求比值。

運用商不變的性質或分數的基本性質化簡比。

能運用比的意義解決按照一定的比進行分配的實際問題。

空間與圖形
圖形的認識
認識圓、體會圓的特徵及圓心和半徑的作用,會用圓規畫圓。
通過觀察、操作、想像等活動,發展空間觀念。通過動手拼擺等活動,體會「化曲為直」的數學思想;結合欣賞和設計,發展想像力和創造力;提高學生靈活運用各種策略解決問題的能力。

用圓的知識解釋生活中的簡單現象。

掌握圓的周長和面積的計算方法。

利用圓規設計簡單的圖案。

運用圓的周長和面積的知識解決實際問題(包括復雜的組合圖形周長和面積的計算)。

圖形與變換
能有條理的表達一個簡單圖形經過平移、旋轉或軸對稱製作復雜圖形的過程。
通過欣賞和設計圖案,使學生感受圖形世界的神奇,發展學生的空間觀念。

能靈活運用平移、旋轉和軸對稱在方格紙上設計圖案

圖形與位置
能正確辨認從不同方向(正面、側面、上面)觀察到的立體圖形(5個小正方體)的形狀,並畫出草圖。
通過觀察物體,發現規律,不斷發展學生的空間觀念。

能根據觀察到的正面、側面、上面的平面圖形還原立體圖形。

能根據給定的兩個方向觀察到的平面圖形的形狀確定搭成的立體圖形所需小立方體的數量范圍。

利用觀察范圍隨觀察點、觀察角度的變化而改變的規律解釋生活中的一些現象。

統計與概率
數據統計
認識復式條形統計圖和復式折線統計圖,了解他們的特點。
經歷收集、整理和分析數據的過程,逐步形成統計觀念。

能根據需要選擇復式條形統計圖和復式折線統計圖有效地表示數據。

能讀懂簡單的復式統計圖,根據統計結果做出簡單的判斷和預測。

綜合實踐
數學與體育
用列表、畫圖的方式尋找解決問題的規律。
體會數學知識在體育、生活中的應用,發展數學應用意識,體會圖表的關系,學會分析量與量之間的關系,提高觀察分析能力,增強應用意識。

運用圓的有關知識計算所走彎道距離。

利用數學知識解決營養配餐問題。

生活中的數
了解收集數據的常用方法。
通過對現實生活中的數據的處理,發展數感與處理數據的能力;體會數在表達、交流和傳遞信息中的作用。

體會大數估計的策略和方法,進行簡單的估算。

了解數字的用途,知道一個「編號」中某些數字所代表的意義。

進一步體會負數的意義。

會畫折線統計圖描述事物的變化情況。

看圖找關系
從圖中分析出某些量之間的關系,並用語言表達。
發展有條理思考和表達的能力。

體會圖刻畫事物或數之間的關系,能分析一些簡單的關系。

第一單元:圓

圓的認識(一)

1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.

2.圓有無數條半徑,有無數條直徑.

3.圓心決定圓的位置,半徑決定圓的大小.

圓的認識(二)

4.把圓對折,再對折就能找到圓心.

5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.

6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.

圓的周長

7.圓一周的長度就是圓的周長.

8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.

9.C=πd或C=πr.

10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4

圓的面積

11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)

12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400

13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.

第二單元:百分數的應用

百分數的應用(四)

14.利息=本金乘利率乘時間

第四單元:比的認識

15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.

❷ 六年級上冊數學知識點

六年級數學上冊期末復習要點(人教版)

第1單元 分數乘法

(二)分數乘法的意義

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變.

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母(分子乘分子,分母乘分母)。

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b<0)。

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=bXa乘法結合律:(a×b)Xc=a×(b×c)

乘法分配律:a×(b±c)=a×b土a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

內容比較多,完整列印版請見網路文庫:人教版六年級上冊數學期末知識要點

❸ 小學六年級數學總復習資料

《小學1-6年級數學學霸筆記(含資料匯編)》網路網盤資源免費下載

鏈接:https://pan..com/s/1o6VvvMbzpBZXH5o_eS8UDw

提取碼:1fxs

小學1-6年級數學學霸筆記(含資料匯編)|人教版小學各年級數學知識點歸納|【2】小學數學期中考試試卷合集(各年級上冊)|【1】小學1-6年級數學知識點歸納|【數學】一年級十大趣味數學2.pdf|【數學】一年級十大趣味數學.pdf|【數學】學而思網校內部奧數習題集.中年級.docx|【數學】學而思網校內部奧數習題集.高年級.doc|【數學】學而思網校內部奧數習題集.低年級.docx|【數學】小升初總復習數學歸類講解及訓練中(含答案).doc|【數學】第十八屆華杯賽初賽試卷_小學中年級組解析.pdf|【數學】第十八屆華杯賽初賽試卷_小學中年級組.pdf|【數學】第十八屆華杯賽初賽試卷_小學高年級組解析.pdf|【數學】第十八屆華杯賽初賽試卷_小學高年級組.pdf|蘇教版數學上冊期末試卷

❹ 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點:

一、分數

1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2.分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3.分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4.分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。

二、百分數

1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。

2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。

三、分數除法

1、分數除法:分數除法是分數乘法的逆運算。

2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

四。比例

1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。

❺ 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

❻ 人教版小學六年級數學上冊概念都是有哪些

你要的資料,包括很多公式,知識點,我們都整理成集,分享給你,希望對你有幫助。

《小學階段語文、英語、數字、音樂、美術、體育、自然、科學等》網路網盤資源大全

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

對於小學階段所涉及到的各科各類資料,我拍改們都收集、歸類並定期更新。歡迎有需求的家長、老師收藏。

❼ 六年級數學必背公式是什麼

小學六年級上冊數學必背公式大全:

一、用字母表示運算定律或性質。

加法交換律:a+b=b+a。

加法結合律:(a+b)+c=a+(b+c)。

乘法交換律:ab=ba。

乘法結合律:(ab)c=a(bc)。

乘法分配律:a(b+c)=ab+ac。

二、幾何圖形計算公式。

(1)周長:即圍繞物體一周的長度。

①長方形周長=(長+寬)×2,C=(a+b)×2。

②正方形周長=邊長×4,C=4a。

③圓的周長=圓周率×直徑=圓周率×半徑×2,C=πd,C =2πr。

(2)面積:即物體的表面或封閉圖形的大小。

①長方形的面積=長×寬,S=ab。

②正方形的面積=邊長×邊長,S=axa=a2。

③平行四邊形的面積=底×高,S=ah。

④三角形的面積=底×高÷2,S=ah÷2。

⑤梯形的面積=(上底+下底)×高÷2,S=(a+b)h÷2。

⑥圓的面積=圓周率×半徑,S=πr2。

⑦直徑d=2r,徑=直徑÷2,r= d÷2。

⑧環形面積=外圓面積-內圓面積,S環=S外-S內。

【相互聯系】 平面圖形的面積公式是以長方形面積計算公式為基礎的。如兩個完全相同的三角形、梯形可拼成一個平行四邊形。圓拼成長方形的長時1/2C,寬是R。

(3)表面積:立體圖形的所有面的面積之和叫做它的表面積。

①長方體的表面積=(長×寬+長×高+寬×高)×2,S=2(ab+ah+bh)。

②正方體的表面積=棱長×棱長×6,S=a×a×6=6a2。

③圓柱體的側面積=底面周長×高,S=Ch=2πrh。

④圓柱體的表面積=側面積+底面積×2,S=Ch+2πr2= 2πrh+2πr2。

注意:圓柱的底面周長與高相等時側面展開是正方形,C=h2πr。

(4)體積:物體所佔空間的大小叫體積。

①長方體的體積=長×寬×高,V=abh。

②正方體的體積=棱長×棱長×棱長,V=a×a×a=a3。

③圓柱的體積=底面積×高,V=sh=πr2h。

④圓錐的體積=底面積×高÷3,V=1/3sh= 1/3πr2h。

【相互聯系】長方體、正方體和圓柱體的體積公式可統一成:V=sh,即底面積×高。等體積等底的長、正、圓柱體和圓錐體,圓錐高是長方體、正方體、圓柱體高的3倍。

三、數量關系式:

1、每份數×份數=總數。

總數÷每份數=份數。

總數÷份數=每份數。

2 、單價×數量=總價 。

總價÷單價=數量 。

總價÷數量=單價。

3、速度×時間=路程 。

路程÷速度=時間 。

路程÷時間=速度。

4、工效×工時=工作總量 。

工作總量÷工效=工時 。

工作總量÷工時=工效 。

5、 加數+加數=和 。

和-一個加數=另一個加數。

6、 被減數-減數=差 。

被減數-差=減數 。

差+減數=被減數。

7、 因數×因數=積 。

積÷一個因數=另一個因數。

8、 被除數÷除數=商 。

被除數÷商=除數 。

商×除數=被除數 。

被除數=除數×商+余數。

注意:0.3÷0.2=1...0.1,除數與被除數同時擴大100倍,商不變,余數也擴大100倍。

9、 平均數=總數÷總份數 。

平均速度=總路程÷總時間。

10、相遇路程=速度和×相遇時間 。

相遇時間=相遇路程÷速度和 。

速度和=相遇路程÷相遇時間 。

一個人的速度=相遇路程÷相遇時間-另一個人的速度。

11、平均速度=總路程÷(順流時間+逆流時間)。

注意:折(往)返=路程×2。

12、溶質(葯)+溶劑(水)=溶液(葯水),溶質(葯)÷溶液(葯水)=濃度,溶液(葯水)×濃度=溶質(葯),溶質(葯)÷濃度=溶液(葯水)。

13、折扣=現價÷原價 (折扣<1) 。

現價=原價×折扣。

原價=現價÷折扣 。

14、利息=本金×年利率×時間(年)=本金×月利率×時間(月)。

稅後利息=本金×利率×時間×(1-5%)。

15、比例尺=圖上距離÷實際距離。

實際距離=圖上距離÷比例尺 。

圖上距離=實際距離×比例尺 。

16、追及距離=速度差×追及時間 。

追及時間=追及距離÷速度差 。

速度差=追及距離÷追及時間。

小學六年級下冊數學必背公式大全:

負數必背知識點:

1、0既不是正數,也不是負數,它是正數和負數的分界。0大於所有負數,小於所有正數。負數比較大小,不考慮負號,數字大的數反而小。

2、「+」可以省略不寫,「-」不能省略。

3、數軸的要素:正方向(箭頭表示)、原點(0刻度)、單位長度(刻度)。 0左邊的數都是負數,0右邊的數都是正數

百分數(二)知識點:

1、折扣:商品按原定價格的百分之幾出售,叫做折扣。通稱「打折」。幾折就表示十分之幾,也就是百分之幾十。例如八折就表示十分之八,就是按原價的80﹪出售。

2、成數:「幾成」就是十分之幾,也就是百分之幾十。三成五就是十分之三點五,也就是35%

3、應納稅額 = 總收入×稅率 稅率=應納稅額÷總收入 總收入=應納稅額÷稅率

4、利息=本金×利率×存期

5、滿100元減50元,就是在總價中取整百元部分,每個100元減去50元,不滿100元的零頭部分不優惠。

圓、圓柱、圓柱必背公式:

1、在同圓或等圓內,直徑的長度是半徑的2倍,公式d=2r;半徑的長度是直徑的一半,公式r=d÷2。

2、已知直徑求周長:圓的周長=圓周率×直徑,公式C=πd,直徑=周長÷圓周率,公式d=C÷π。

3、已知半徑求周長:圓的周長=2×圓周率×半徑,公式C=2πr,半徑=周長÷圓周率的2倍,公式r=C÷2π。

4、已知半徑求面積:圓的面積=圓周率×半徑的平方,公式S圓=πr2。

5、已知直徑求面積:圓的面積=圓周率×(直徑÷2)的平方,公式S圓 =π(d÷2)2。

6、圓柱的側面積=底面的周長×高,公式S側=Ch;圓柱的底面周長=側面積÷高,公式C=s側÷h;圓柱的高=側面積÷底面周長,公式h=S側÷C。

7、圓柱的表面積=側面積+2×底面積,公式 S表= S側+2S底。

8、圓柱的體積等於底面積乘以高,公式 V圓柱=Sh。圓柱的高等於體積除以底面積,公式h=v÷s;圓柱的底面積等於體積除以高,公式s=v÷h。

9、一個圓錐的體積等於與它等底等高的圓柱體積的三分之一 。圓錐體積公式:V=1 /3Sh。圓錐的高等於體積的3倍除以底面積,公式h=3v÷s;圓錐的底面積等於體積的3倍除以高,公式s=3v÷h。

10、環形的面積=大圓面積-小圓面積,S環 =πR -πr。

11、體積和高相等的圓錐與圓柱之間,圓錐的底面積是圓柱的三倍。即圓錐的底面積=圓柱底面積×3,圓柱底面積=圓錐底面積÷3。

12、體積和底面積相等的圓錐與圓柱之間,圓錐的高是圓柱的三倍。即圓錐的高=圓柱的高×3,圓柱的高=圓錐的高÷3。

比例必背知識點:

1、表示兩個比相等的式子叫做比例。如2:1=6:3。

2、在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6。

3、解比例 :根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。例如3:x = 4:8,內項乘內項,外項乘外項,則:4x =3×8,解得x=6。

4、成正比例的量: 兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。

用字母表示y/x=k(一定) 例如:速度一定,路程和時間成正比例,因為:路程÷時間=速度(一定)。

5、成反比例的量 :兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。 用字母表示x×y=k(一定) 例如:路程一定,速度和時間成反比例,因為:速度×時間=路程(一定)。

6、圖上距離:實際距離=比例尺;實際距離=圖上距離÷比例尺;圖上距離=實際距離×比例尺;

數學廣角---鴿巢問題:

1、物體數÷抽屜數=商……余數 至少數=商+1。

2、只要摸出的球數比它們的顏色種數多1,就能保證有兩個球同色。







❽ 小學六年級上冊數學必考知識點有哪些

一、運算定律或性質

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

乘法交換律:ab=ba

乘法結合律:(ab)c=a(bc)

乘法分配律:a(b+c)=ab+ac

二、幾何圖形計算公式

周長:即圍繞物體一周的長度。

①長方形周長=(長+寬)×2 C=(a+b)×2

②正方形周長=邊長×4 C=4a

③圓的周長=圓周率×直徑=圓周率×半徑×2 C=πd C =2πr

面積:即物體的表面或封閉圖形的大小

①長方形的面積=長×寬S=ab

②正方形的面積=邊長×邊長S=a•a=a2

③平行四邊形的面積=底×高S=ah

④三角形的面積=底×高÷2 S=ah÷2

三、數量關系式

1、每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

2、單價×數量=總價

總價÷單價=數量

總價÷數量=單價

3、速度×時間=路程

路程÷速度=時間

路程÷時間=速度

四、分數乘法的演算法:

1、分數與整數相乘,分子與整數相乘的積做分子,分母不變。

2、分數與分數相乘,用分子相乘的積做分子,分母相乘的積做分母。

分數的化簡:分子、分母同時除以它們的最大公因數。

五、分數除法

分數除法是分數乘法的逆運算,就是已知兩個數的積與其中一個因數,求另一個因數的運算。除以一個數是乘這個數的倒數,除以幾就是乘這個數的幾分之一。

比:兩個數相除也叫兩個數的比。比表示兩個數的關系,可以寫成比的形式,也可以用分數表示,但仍讀幾比幾。註:10/2=5/1,表示比讀5比1,19:2=5,是比值,比值是一個數,可以是整數,分數,也可以是小數。

❾ 六年級數學上冊必考知識點是什麼

【常用的數量關系】

1、每份數×份數=總數; 總數÷每份數=份數 ; 總數÷份數=每份數。

2、1倍數×倍數=幾倍數; 幾倍數÷1倍數=倍數; 幾倍數÷倍數=1倍數。

3、速度×時間=路程 ; 路程÷速度=時間 ; 路程÷時間=速度。

4、單價×數量=總價; 總價÷單價=數量 ; 總價÷數量=單價。

5、工作效率×工作時間=工作總量; 工作總量÷工作效率=工作時間。

工作總量÷工作時間=工作效率。

6、加數+加數=和; 和-一個加數=另一個加數。

7、被減數-減數=差; 被減數-差=減數; 差+減數=被減數。

8、因數×因數=積; 積÷一個因數=另一個因數。

9、被除數÷除數=商 ; 被除數÷商=除數; 商×除數=被除數。

【小學數學圖形計算公式】

1、正方形(C:周長, S:面積, a:邊長)。

周長=邊長×4; C=4a。

面積=邊長×邊長; S=a×a。

2、正方體(V:體積, a:棱長)。

表面積=棱長×棱長×6; S表=a×a×6。

體積=棱長×棱長×棱長; V= a×a×a。

3、長方形(C:周長, S:面積, a:邊長, b:寬 )。

周長=(長+寬)×2; C=2(a+b)。

面積=長×寬 ; S=a×b。

4、長方體(V:體積, S:面積, a:長, b:寬, h:高)。

(1)表面積=(長×寬+長×高+寬×高)×2; S=2(ab+ah+bh)。

(2)體積=長×寬×高; V=abh。

5、三角形(S:面積, a:底, h:高)。

面積=底×高÷2 ; S=ah÷2。

三角形的高=面積×2÷底 三角形的底=面積×2÷高。

6、平行四邊形(S:面積, a:底, h:高)。

面積=底×高; S=ah。

7、梯形(S:面積, a:上底, b:下底, h:高)。

面積=(上底+下底)×高÷2; S=(a+b)×h÷2。

8、圓形(S:面積, C:周長,π:圓周率, d:直徑, r:半徑 )。

(1)周長=π×直徑π=2×π×半徑; C=πd=2πr。

(2)面積=π×半徑×半徑; S= πr2。

9、圓柱體(V:體積, S:底面積, C:底面周長, h:高, r:底面半徑 )。

(1)側面積=底面周長×高=Ch=πdh=2πrh。

(2)表面積=側面積+底面積×2。

(3)體積=底面積×高。

10、圓錐體(V:體積, S:底面積, h:高, r:底面半徑 )。

體積=底面積×高÷3。

11、總數÷總份數=平均數。

12、和差問題的公式:已知兩數的和及它們的差,求這兩個數各是多少的應用題,叫做和差應用題,簡稱和差問題。

(和+差)÷2=大數; (和-差)÷2=小數。

❿ 小學數學六年級上冊知識點總結

我有教案,上面有,你自己找吧,選我吧。
1.用數對表示物體的位置。
2.在方格紙上用數對確定位置。

分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算

分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
例1 倒數的意義
例2 倒數的求法

例1 分數除法的意義
例2 分數除法的計算方法
例3
例4 分數四則混合運算例1 己知一個數的幾分之幾是多少,求這個數的問題
例2 稍復雜的己知一個數的幾分之幾是多少,求這個數的問題
第一小節 比的意義
第二小節 例1 比的基本性質
第三小節 例2 比的應用

認識圓 例1 用一般的物體畫圓
例2 通過折圓的操作活動認識圓
用圓規畫圓
例3 認識圓是軸對稱圖形
圓的周長 探索圓的周長公式、圓周率
例1 圓的周長的計算
圓的面積 探索圓的面積公式
例1 圓的面積計算
例2 圓形的面積計算