當前位置:首頁 » 基礎知識 » 初2數學知識點總結圖片
擴展閱讀
大雁是什麼歌詞 2024-11-03 00:19:26

初2數學知識點總結圖片

發布時間: 2022-07-30 23:22:36

① 求高中數學公式總結圖片版

② 初二上學期數學所有知識點歸納

初二數學知識
第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀點看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見的統計圖表:條形圖、扇形圖、折線圖、復合條形圖、直方圖,了解各種圖表的特點
條形圖特點:
(1)能夠顯示出每組中的具體數據;
(2)易於比較數據間的差別
扇形圖的特點:
(1)用扇形的面積來表示部分在總體中所佔的百分比;
(2)易於顯示每組數據相對與總數的大小
折線圖的特點;
易於顯示數據的變化趨勢
直方圖的特點:
(1)能夠顯示各組頻數分布的情況;
(2)易於顯示各組之間頻數的差別
2 會用各種統計圖表示出一些實際的問題
第三章 全等三角形
1 全等三角形的性質:
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質
角平分線上的點到角的兩邊的距離相等;
到角的兩邊距離相等的點在角的平分線上。
第四章 軸對稱
1 軸對稱圖形和關於直線對稱的兩個圖形
2 軸對稱的性質
軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連的線段的垂直平分線;
線段垂直平分線上的點到線段兩個端點的距離相等;
到線段兩個端點距離相等的點在這條線段的垂直平分線上
3 用坐標表示軸對稱
點(x,y)關於x軸對稱的點的坐標是(x,-y),關於y軸對稱的點的坐標是(-x,y),關於原點對稱的點的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個底角相等;(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個三角形的兩個相等的角所對的邊也相等。(等角對等邊)
5 等邊三角形的性質和判定
等邊三角形的三個內角都相等,都等於60度;
三個角都相等的三角形是等邊三角形;
有一個角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個銳角是30度,那麼他所對的直角邊等於斜邊的一半。
在三角形中,大角對大邊,大邊對大角。

第五章 整式
1 整式定義、同類項及其合並
2 整式的加減
3 整式的乘法
(1)同底數冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下冊知識點
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差

③ 數學青島版第一單元思維導圖

高中數學的成績,不刷題是不行的,有人一天刷一張試卷,有人兩天完成一份,這些學生刷題不止可是成績沒有提高,症結在於不會在總結題目中整理自己的思考過程!

因為對於任何一道題,其實答案並不重要,思路才是關鍵——換句話說,你想出來的答案並不是關鍵,關鍵問題在於:你想不想得出來——因為你永遠不可能在未來的考場上碰到一摸一樣的題目,但卻很有可能需要重復使用與之類似的思考方式。

然而,「思路」是一種非常抽象的概念,而「答案」則是具體的內容。很多同學做錯題集,也只是把正確答案謄寫上去,因為想要用錯題集分析「思路」是一件困難的事。

二項式定理

概率與統計

演算法

④ 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

⑤ 數學思維導圖怎麼畫

數學思維導圖的構建模式是先確定中心主題,引出子主題,再將子主題劃分為不同層次。具體操作步驟如下。

1、使用最簡單的語言確定要繪制的數學主題,以「角度測量」為例,如下圖所示。

注意事項:

上述思維導圖里,由角引出了射線的定義角和射線之間,畫一條關系線,方便我們把知識點串聯起來即可。

⑥ 初中數學初一初二知識點

函數的要素:自變數,因變數,常數k(系數,斜率),自變數的值在平面直角坐標系的橫軸上(X軸)表示,因變數的值在縱坐標軸上(Y軸)表示。點的坐標為:(x,y)
一。正比例函數
1、.圖像:解析式:y=kx
(k≠0)經過原點的一條直線。是特殊的一次函數。
2、性質:k>0時,圖像經過
一、三象限。y隨x的增大而曾大,y隨x的減小而減小。
k<0時,圖像經過
二、四象限,y隨x的增大而減小,y隨x的減小而增大。
3、畫法:任取一個點,再過原點作一條直線就可以了。
二、一次函數
1、圖像:解析式:Y=kx+b(k≠0),是正比例函數y=kx
(k≠0),上下平移b個單位得來的
與坐標軸有兩個交點。A(0,y),B(x,0),找到
x,y
的值後過這兩點作一條直線就
好了。
2、和正比例函數的性質相同。k的絕對值越大,圖像越來越接近y軸,反之接近x軸。k=1時,圖
像是一三象限的角平分線,k=-1時,圖像是二四象限的角平分線。
考點:經常用兩個一次函數的圖像來說明兩種電話費的優惠情況。(有座機費,一次函數;無座機費,正比例函數)兩個函數的圖像有一個交點,其橫坐標表示通話時間,縱坐標表示收費情況
交點的橫坐標值表示通話時間,縱坐標值表示兩種收費一樣。交點靠右,隨著通話時間的增加,一次函數圖像低,表示有座機費的優惠。交點靠左,表示通話時間低於這個范圍,無座機費的優惠。舉一反三,其他類似題目不一一說明。
三、反比例函數
1、圖像:解析式:y=k/x(k≠0)圖像是雙曲線。
2、性質:k>0時,圖像在一三象限,y隨x的增大而減小,y隨x的減小而增大。
k<0時,圖像在二四象限,y隨x的增大而增大,y隨X的減小而減小。
圖像永遠不與坐標軸相交。圖像兩個分支關於原點對稱。
考點:與一次函數合並起來在一個坐標系研究。一般是求交點坐標。分析;相交時候,兩個方程的x和y是分別相等的,只要讓
k1x=k2/x
相等就可以求出x的值,有兩個,分別代入原解析式就求出y,,從而點的坐標就知道了。
較復雜的題目是一次函數與反比例函數相交,形成了三角形,求三角形面積。或者告訴你面積了,讓你確定
函數的解析式。
總之,求解析式就是分析是什麼樣的函數,從而設出對應的解析式,代入求值就行了,我們稱為【待定系數法】。詳細的解題的思路和方法技巧需要結合一些題目來說明。你發過來,追問,我可以給你畫多個圖。

⑦ 七年級數學上冊知識點

1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等
第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
由幾個含有同一個未知數的一元一次不等式組成的不等式組,叫做一元一次不等式組
不等式組中所有不等式的解集的公共部分叫做這個不等式組的解集。求不等式組的解集的過程叫做解不等式組。
解不解不等式的訣竅
大於大於取大的(大大大);
例如:X>-1
X>2
不等式組的解集是X>2
小於小於取小的(小小小);
例如:X<-4
X<-6
不等式組的解集是X<-6
大於小於交叉取中間;
無公共部分分開無解了;
解方程型:
1.某商店到蘋果產地去收購蘋果,收購價為每千克1.2元,從產地到商店的距離是400km,運費為每噸貨物每運1km收1.5元,如果在運輸及銷售過程中的損耗為10%,商店要想獲得其成本的25%的利潤,零售價應是每千克多少元?

解:
運輸成本:400*1。5=600元
收購成本:1。2*1000=1200元
設銷價是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即銷價是2.5元/千克

①某球迷協會組織36名球擬租乘汽車赴比賽場地,為主隊加油助威。可租用的汽車有兩種:一種每輛可乘8人,另一種每輛可乘4人,要求租用的車子不留空位,也不超載。若8個座位的車子的租金是300元/天,4個座位的車子的租金是200元/天,請你設計出費用最少的租車方案,並說明理由。
問題補充:
甲步行,乙騎自行車,兩人同時從相距45km的A、B兩地出發相向而行,2.5h後兩人相遇,已知乙騎自行車的速度是甲步行速度的2倍,求甲步行的速度。(列方程解)
1.某商店到蘋果產地去收購蘋果,收購價為每千克1.2元,從產地到商店的距離是400km,運費為每噸貨物每運1km收1.5元,如果在運輸及銷售過程中的損耗為10%,商店要想獲得其成本的25%的利潤,零售價應是每千克多少元?

解:
運輸成本:400*1。5=600元
收購成本:1。2*1000=1200元
設銷價是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即銷價是2.5元/千克

2.甲、乙兩人各坐一遊艇在湖中劃行,甲每搖槳10次時,乙只能搖槳8次;而乙搖槳70次所走的路程等於甲搖槳90次所走的路程。開始時,甲先搖槳4次,乙接著搖槳。問乙搖幾次槳才能追上甲?

解:
設甲每次前進的路程是1,乙要x次才能追上.乙x次的時候,甲劃了(10/8)x=(5/4)x次,甲90次就是90,這需要乙70次,則乙每次前進90/70=9/7,甲先4次,就是4.
4+1*(5/4)x=(9/7)*x
[(9/7)-(5/4)]x=4
(1/28)x=4
x=112(次)

⑧ 初2數學下冊書所有知識點

初二數學下知識點總結
平移與旋轉
旋轉
旋轉的定義:
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
旋轉的性質:
旋轉後得到的圖形與原圖形之間有:對應點到旋轉中心的距離相等,旋轉角相等。
中心對稱
中心對稱的定義:
如果一個圖形繞某一點旋轉180度後能與另一個圖形重合,那麼這兩個圖形叫做中心對稱。
中心對稱圖形的定義:
如果一個圖形繞一點旋轉180度後能與自身重合,這個圖形叫做中心對稱圖形。
中心對稱的性質:
在中心對稱的兩個圖形中,連結對稱點的線段都經過對稱中心,並且被對稱中心平分。
軸對稱
軸對稱的定義:
如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對
稱圖形,這條直線叫做對稱軸。
軸對稱圖形的性質:
①角的平分線上的點到這個角的兩邊的距離相等。
②線段垂直平分線上的點到這條線段兩個端點的距離相等。
③等腰三角形的「三線合一」。
3.軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
圖形變換
圖形變換的定義:圖形的平移、旋轉、和軸對稱統稱為圖形變換。
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果(k,b是常數,k0),那麼y叫做x的一次函數。
特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。
2、一次函數的圖像
所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。(如下圖)
4.
正比例函數的性質
一般地,正比例函數有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。

⑨ 數學函數思維導圖怎麼畫

數學思維導圖的構建模式,都是先確定一個中心主題,引出子主題,對子主題再分層次即可。具體操作步驟如下。

1、用最簡潔的語言確定要畫的數學主題。以「角的度量」為例。如下圖所示。

注意事項:

上述思維導圖里,由角引出了射線的定義角和射線之間,畫一條關系線,方便我們把知識點串聯起來即可。

⑩ 初中數學知識導圖

網路圖就沒有了,知識點可以不?好多的知識點…還是要慢慢的一點一點的啃啊,當初我就是這樣啃過來的~~
初中數學概念及定義總結:三角形三條邊的關系 定理:三角形兩邊的和大於第三邊 推論:三角形兩邊的差小於第三邊 三角形內角和 三角形內角和定理 三角形三個內角的和等於180° 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等於和它不相鄰的兩個內角和 推論3 三角形的一個外角大雨任何一個和它不相鄰的內角 角的平分線 性質定理 在角的平分線上的點到這個角的兩邊的距離相等 判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上 等腰三角形的性質 等腰三角形的性質定理 等腰三角形的兩底角相等 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 推論2 等邊三角形的各角都相等,並且每一個角等於60° 等腰三角形的判定 判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等 推論1 三個角都相等的三角形是等邊三角形 推論2 有一個角等於60°的等腰三角形是等邊三角形 推論3 在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半 線段的垂直平分線 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 軸對稱和軸對稱圖形 定理1 關於某條之間對稱的兩個圖形是全等形 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 定理3 兩個圖形關於某直線對稱,若它們的對應線段或延長線相交,那麼交點在對稱軸上 逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關於這條直線對稱 勾股定理 勾股定理 直角三角形兩直角邊a、b的平方和,等於斜邊c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那麼這個三角形是直角三角形 四邊形 定理 任意四邊形的內角和等於360° 多邊形內角和 定理 多邊形內角和定理n邊形的內角的和等於(n - 2)·180° 推論 任意多邊形的外角和等於360° 平行四邊形及其性質 性質定理1 平行四邊形的對角相等 性質定理2 平行四邊形的對邊相等 推論 夾在兩條平行線間的平行線段相等 性質定理3 平行四邊形的對角線互相平分 平行四邊形的判定 判定定理1 兩組對邊分別平行的四邊形是平行四邊形 判定定理2 兩組對角分別相等的四邊形是平行四邊形 判定定理3 兩組對邊分別相等的四邊形是平行四邊形 判定定理4 對角線互相平分的四邊形是平行四邊形 判定定理5 一組對邊平行且相等的四邊形是平行四邊形 矩形 性質定理1 矩形的四個角都是直角 性質定理2 矩形的對角線相等 推論 直角三角形斜邊上的中線等於斜邊的一半 判定定理1 有三個角是直角的四邊形是矩形 判定定理2 對角線相等的平行四邊形是矩形 菱形 性質定理1 菱形的四條邊都相等 性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 判定定理1 四邊都相等的四邊形是菱形 判定定理2 對角線互相垂直的平行四邊形是菱形 正方形 性質定理1 正方形的四個角都是直角,四條邊都相等 性質定理2 正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 中心對稱和中心對稱圖形 定理1 關於中心對稱的兩個圖形是全等形 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱 梯形 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 三角形、梯形中位線 三角形中位線定理 三角形的中位線平行與第三邊,並且等於它的一半 梯形中位線定理 梯形的中位線平行與兩底,並且等於兩底和的一半 比例線段 1、 比例的基本性質 如果a∶b=c∶d,那麼ad=bc 2、 合比性質 3、 等比性質 平行線分線段成比例定理 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例 推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行與三角形的第三邊 垂直於弦的直徑 垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧 推論1 (1) 平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 (2) 弦的垂直平分線過圓心,並且平分弦所對的兩條弧 (3) 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 推論2 圓的兩條平分弦所夾的弧相等 圓心角、弧、弦、弦心距之間的關系 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等 圓周角 定理 一條弧所對的圓周角等於它所對的圓心角的一半 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直角 推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 圓的內接四邊形 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角 切線的判定和性質 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 切線的性質定理 圓的切線垂直於經過切點半徑 推論1 經過圓心且垂直於切線的直徑必經過切點 推論2 經過切點且垂直於切線的直線必經過圓心 切線長定理 定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 弦切角 弦切角定理 弦切角等於它所夾的弧對的圓周角 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 和圓有關的比例線段 相交弦定理:圓內的兩條相交弦,被焦點分成的兩條線段長的積相等 推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項 ……

太多了,不過網路很強大,之前有人問過類似的問題,這個可以看看http://..com/question/147977826.html?fr=qrl&cid=197&index=2&fr2=query