當前位置:首頁 » 基礎知識 » 北師大版數學知識點總匯
擴展閱讀
如何畫動漫圖片的簡筆畫 2025-01-13 13:26:29

北師大版數學知識點總匯

發布時間: 2022-07-30 13:30:49

A. 北師大初中數學知識點總結

北師大版初中數學定理知識點匯總[九年級(上冊)
第一章 證明(二)
※等腰三角形的「三線合一」:頂角平分線、底邊上的中線、底邊上的高互相重合。
※等邊三角形是特殊的等腰三角形,作一條等邊三角形的三線合一線,將等邊三角形分成兩個全等的
直角三角形,其中一個銳角等於30º,這它所對的直角邊必然等於斜邊的一半。
※有一個角等於60º的等腰三角形是等邊三角形。
※如果知道一個三角形為直角三角形首先要想的定理有:
①勾股定理: (注意區分斜邊與直角邊)
②在直角三角形中,如有一個內角等於30º,那麼它所對的直角邊等於斜邊的一半
③在直角三角形中,斜邊上的中線等於斜邊的一半(此定理將在第三章出現)
※垂直平分線是垂直於一條線段並且平分這條線段的直線。(注意著重號的意義)
<直線與射線有垂線,但無垂直平分線>
※線段垂直平分線上的點到這一條線段兩個端點距離相等。
※線段垂直平分線逆定理:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。
※三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等。(如圖1所示,AO=BO=CO)

※角平分線上的點到角兩邊的距離相等。
※角平分線逆定理:在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。
角平分線是到角的兩邊距離相等的所有點的集合。
※三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。
(如圖2所示,OD=OE=OF)
第二章 一元二次方程
※只含有一個未知數的整式方程,且都可以化為 (a、b、c為
常數,a≠0)的形式,這樣的方程叫一元二次方程。
※把 (a、b、c為常數,a≠0)稱為一元二次方程的一般形式,a為二次項系數;b為一次項系數;c為常數項。
※解一元二次方程的方法:①配方法 <即將其變為 的形式>
②公式法 (注意在找abc時須先把方程化為一般形式)
③分解因式法 把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括「提公因式」和「十字相乘」)
※配方法解一元二次方程的基本步驟:①把方程化成一元二次方程的一般形式;
②將二次項系數化成1;
③把常數項移到方程的右邊;
④兩邊加上一次項系數的一半的平方;
⑤把方程轉化成 的形式;
⑥兩邊開方求其根。
※根與系數的關系:當b2-4ac>0時,方程有兩個不等的實數根;
當b2-4ac=0時,方程有兩個相等的實數根;
當b2-4ac<0時,方程無實數根。
※如果一元二次方程 的兩根分別為x1、x2,則有: 。
※一元二次方程的根與系數的關系的作用:
(1)已知方程的一根,求另一根;
(2)不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:
① ② ③
④ ⑤
⑥ ⑦其他能用 或 表達的代數式。
(3)已知方程的兩根x1、x2,可以構造一元二次方程:
(4)已知兩數x1、x2的和與積,求此兩數的問題,可以轉化為求一元二次方程 的根
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:
第三章 證明(三)
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※三角形的中位線平行於第三邊,並且等於第三邊的一半。
※夾在兩條平行線間的平行線段相等。
※在直角三角形中,斜邊上的中線等於斜邊的一半
第四章 視圖與投影
※三視圖包括:主視圖、俯視圖和左視圖。
三視圖之間要保持長對正,高平齊,寬相等。一般地,俯視圖要畫在主視圖的下方,左視圖要畫在正視圖的右邊。
主視圖:基本可認為從物體正面視得的圖象
俯視圖:基本可認為從物體上面視得的圖象
左視圖:基本可認為從物體左面視得的圖象
※視圖中每一個閉合的線框都表示物體上一個表面(平面或曲面),而相連的兩個閉合線框一定不在一個平面上。
※在一個外形線框內所包括的各個小線框,一定是平面體(或曲面體)上凸出或凹的各個小的平面體(或曲面體)。
※在畫視圖時,看得見的部分的輪廓線通常畫成實線,看不見的部分輪廓線通常畫成虛線。
物體在光線的照射下,會在地面或牆壁上留下它的影子,這就是投影。
太陽光線可以看成平行的光線,像這樣的光線所形成的投影稱為平行投影。
探照燈、手電筒、路燈的光線可以看成是從一點出發的,像這樣的光線所形成的投影稱為中心投影。
※區分平行投影和中心投影:①觀察光源;②觀察影子。
眼睛的位置稱為視點;由視點發出的線稱為視線;眼睛看不到的地方稱為盲區。
※從正面、上面、側面看到的圖形就是常見的正投影,是當光線與投影垂直時的投影。
①點在一個平面上的投影仍是一個點;
②線段在一個面上的投影可分為三種情況:
線段垂直於投影面時,投影為一點;
線段平行於投影面時,投影長度等於線段的實際長度;
線段傾斜於投影面時,投影長度小於線段的實際長度。
③平面圖形在某一平面上的投影可分為三種情況:
平面圖形和投影面平行的情況下,其投影為實際形狀;
平面圖形和投影面垂直的情況下,其投影為一線段;
平面圖形和投影面傾斜的情況下,其投影小於實際的形狀。

第五章 反比例函數
※反比例函數的概念:一般地, (k為常數,k≠0)叫做反比例函數,即y是x的反比例函數。
(x為自變數,y為因變數,其中x不能為零)
※反比例函數的等價形式:y是x的反比例函數 ←→ ←→ ←→ ←→ 變數y與x成反比例,比例系數為k.
※判斷兩個變數是否是反比例函數關系有兩種方法:①按照反比例函數的定義判斷;②看兩個變數的乘積是否為定值<即 >。(通常第二種方法更適用)
※反比例函數的圖象由兩條曲線組成,叫做雙曲線
※反比例函數的畫法的注意事項:①反比例函數的圖象不是直線,所「兩點法」是不能畫的;
②選取的點越多畫的圖越准確;
③畫圖注意其美觀性(對稱性、延伸特徵)。
※反比例函數性質:
①當k>0時,雙曲線的兩支分別位於一、三象限;在每個象限內,y隨x的增大而減小;
②當k<0時,雙曲線的兩支分別位於二、四象限;在每個象限內,y隨x的增大而增大;
③雙曲線的兩支會無限接近坐標軸(x軸和y軸),但不會與坐標軸相交。
※反比例函數圖象的幾何特徵:(如圖4所示)
點P(x,y)在雙曲線上都有

第六章 頻率與概率
※在頻率分布表裡,落在各小組內的數據的個數叫做頻數;
每一小組的頻數與數據總數的比值叫做這一小組的頻率; 即:
在頻率分布直方圖中,由於各個小長方形的面積等於相應各組的頻率,而各組頻率的和等於1。因此,各個小長方形的面積的和等於1。
※頻率分布表和頻率分布直方圖是一組數據的頻率分布的兩種不同表示形式,前者准確,後者直觀。
用一件事件發生的頻率來估計這一件事件發生的概率。
可用列表的方法求出概率,但此方法不太適用較復雜情況。
※假設布袋內有m個黑球,通過多次試驗,我們可以估計出布袋內隨機摸出一球,它為白球的概率;
※要估算池塘里有多少條魚,我們可先從池塘里捉上100條魚做記號,再放回池塘,之後再從池塘中捉上200條魚,如果其中有10條魚是有標記的,再設池塘共有x條魚,則可依照 估算出魚的條數。(注意估算出來的數據不是確切的,所以應謂之「約是XX」)
※生活中存在大量的不確定事件,概率是描述不確定現象的數學模型,它能准確地衡量出事件發生的可能性的大小,並不表示一定會發生。

B. 北師大版小學數學四年級上冊 知識點歸納

《小學各年級知識點復習及試卷(人教+北師大+蘇教)》網路網盤資源免費下載

鏈接:https://pan..com/s/1zP2eRKS6yU_l51hwSgVdPQ提取碼:2xj2
小學各年級知識點復習及試卷(人教+北師大+蘇教)|小學語文1-6年級古詩文鑒賞|小學試卷電子版|小學1-6年級語文知識點|小學1-6年級數學資料匯編|人教版各年級(語數外)知識點歸納和試卷(含單元專項期中期末)|冀教版語數外|【4】北京課改版小學各年級知識點歸納及測試卷|【1】北師大(語數)知識點及試卷解題|【12.9】蘇教版小學(數學語文)試卷和知識點分析|【12.9】北師大小學數學(測試題)|下冊|上冊|新【北師大版小數6上】試題|新【北師大版小數5上】試題

C. 求北師大版八年級數學上冊知識點總結

北師大版初中數學定理知識點匯總[八年級(上冊)
第一章 勾股定理
※直角三角形兩直角邊的平和等於斜邊的平方。即:
(由直角三角形得到邊的關系),<如圖1所示>
如果三角形的三邊長a,b,c滿足 ,那麼這個三角形是直角三角形。
滿足條件 的三個正整數,稱為勾股數。常見的勾股數組有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)
第二章 實數
※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
※正數有兩個平方根(一正一負);0隻有一個平方根,就是它本身;負數沒有平方根。
※正數的立方根是正數;0的立方根是0;負數的立方根是負數。

第三章 圖形的平移與旋轉
平移:在平面內,將一個圖形沿某個方向移動一定距離,這樣的圖形運動稱為平移。
平移的基本性質:經過平移,對應線段、對應角分別相等;對應點所連的線段平行且相等。
旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。
這個定點叫旋轉中心,轉動的角度叫旋轉角。
旋轉的性質:旋轉後的圖形與原圖形的大小和形狀相同;
旋轉前後兩個圖形的對應點到旋轉中心的距離相等;
對應點到旋轉中心的連線所成的角度彼此相等。
(例:如圖2所示,點D、E、F分別為點A、B、C的對應點,經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。)
第四章 四平邊形性質探索
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※多邊形內角和:n邊形的內角和等於(n-2)•180°
※多邊形的外角和都等於360°
※在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖開叫做中心對稱圖形。
※中心對稱圖形上的每一對對應點所連成的線段被對稱中心平分。
第五章 位置的確定
※平面直角坐標系概念:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫x軸或橫軸;鉛垂的數軸叫y軸或縱軸,兩數軸的交點O稱為原點。
※點的坐標:在平面內一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數a、b分別叫P點的橫坐標和縱坐標,則有序實數對(a、b)叫做P點的坐標。
※在直角坐標系中如何根據點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。
※如何根據已知條件建立適當的直角坐標系?
根據已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:①以某已知點為原點,使它坐標為(0,0);②以圖形中某線段所在直線為x軸(或y軸);③以已知線段中點為原點;④以兩直線交點為原點;⑤利用圖形的軸對稱性以對稱軸為y軸等。
※圖形「縱橫向伸縮」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:①當n>1時,伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別變成原來的n倍時,所得的圖形比原來的圖形在縱向:①當n>1時, 伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
※圖形「縱橫向位置」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個單位。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個單位。
※圖形「倒轉與對稱」的變化規律:
A、將圖形上各個點的橫坐標不變,縱坐標分別乘以-1,所得的圖形與原來的圖形關於x軸對稱。
B、將圖形上各個點的縱坐標不變,橫坐標分別乘以-1,所得的圖形與原來的圖形關於y軸對稱。
※圖形「擴大與縮小」的變化規律:
將圖形上各個點的縱、橫坐標分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;①當n>1時,對應線段大小擴大到原來的n倍;②當0<n<1時,對應線段大小縮小到原來的n倍。
第六章 一次函數
若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

※正比例函數y=kx的圖象是經過原點(0,0)的一條直線。
※在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
第七章 二元一次方程組
※含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 兩個一次方程所組成的一組方程叫做二元一次方程組。
※解二元一次方程組:①代入消元法; ②加減消元法(無論是代入消元法還是加減消元法,其目的都是將「二元一次方程」變為「一元一次方程」,所謂之「消元」)
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x或y;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:
第八章 數據的代表
※加權平均數:一組數據 的權分加為 ,則稱 為這n個數的加權平均數。 (如:對某同學的數學、語文、科學三科的考查,成績分別為72,50,88,而三項成績的「權」分別為4、3、1,則加權平均數為: )
※一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
※一組數據中出現次數最多的那個數據叫做這組數據的眾數。
※眾數著眼於對各數據出現次數的考察,中位數首先要將數據按大小順序排列,而且要注意當數據個數為奇數時,中間的那個數據就是中位數;當數據個數為偶數時,居於中間的兩個數據的平均數才是中位數,特別要注意一組數據的平均數和中位數是唯一的,但眾數則不一定是唯一的。

D. 北師大版七年級數學上冊知識點

北師大版初一數學定理知識點匯總[七年級上冊]
第一章 豐富的圖形世界

¤1.

¤2.

¤3. 球體:由球面圍成的(球面是曲面)
¤4. 幾何圖形是由點、線、面構成的。
①幾何體與外界的接觸面或我們能看到的外表就是幾何體的表面。幾何的表面有平面和曲面;
②面與面相交得到線;
③線與線相交得到點。
※5. 棱:在稜柱中,任何相鄰兩個面的交線都叫做棱。
※6. 側棱:相鄰兩個側面的交線叫做側棱,所有側棱長都相等。
¤7. 稜柱的上、下底面的形狀相同,側面的形狀都是長方形。
¤8. 根據底面圖形的邊數,人們將稜柱分為三稜柱、四稜柱、五稜柱、六稜柱……它們底面圖形的形狀分別為三邊形、四邊形、五邊形、六邊形……
¤9. 長方體和正方體都是四稜柱。
¤10. 圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。
¤11. 圓錐的表面展開圖是由一個圓形和一個扇形連成。
※12. 設一個多邊形的邊數為n(n≥3,且n為整數),從一個頂點出發的對角線有(n-3)條;可以把n邊形成(n-2)個三角形;這個n邊形共有 條對角線。
◎13. 圓上兩點之間的部分叫做弧,弧是一條曲線。
◎14. 扇形,由一條弧和經過這條弧的端點的兩條半徑所組成的圖形。
¤15. 凸多邊形和凹多邊形都屬於多邊形。有弧或不封閉圖形都不是多邊形。

第二章 有理數及其運算



※數軸的三要素:原點、正方向、單位長度(三者缺一不可)。
※任何一個有理數,都可以用數軸上的一個點來表示。(反過來,不能說數軸上所有的點都表示有理數)
※如果兩個數只有符號不同,那麼我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數。(0的相反數是0)
※在數軸上,表示互為相反數的兩個點,位於原點的側,且到原點的距離相等。
¤數軸上兩點表示的數,右邊的總比左邊的大。正數在原點的右邊,負數在原點的左邊。
※絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。
※正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。
0
-1
-2
-3
1
2
3
越來越大

※絕對值的性質:除0外,絕對值為一正數的數有兩個,它們互為相反數;
互為相反數的兩數(除0外)的絕對值相等;
任何數的絕對值總是非負數,即|a|≥0
※比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:
①先求出兩個數負數的絕對值;
②比較兩個絕對值的大小;
③根據「兩個負數,絕對值大的反而小」做出正確的判斷。
※絕對值的性質:
①對任何有理數a,都有|a|≥0
②若|a|=0,則|a|=0,反之亦然
③若|a|=b,則a=±b
④對任何有理數a,都有|a|=|-a|
※有理數加法法則: ①同號兩數相加,取相同符號,並把絕對值相加。
②異號兩數相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數的符號,並用較大數的絕對值減去較小數的絕對值。
③一個數同0相加,仍得這個數。
※加法的交換律、結合律在有理數運算中同樣適用。
¤靈活運用運算律,使用運算簡化,通常有下列規律:①互為相反的兩個數,可以先相加;
②符號相同的數,可以先相加;
③分母相同的數,可以先相加;
④幾個數相加能得到整數,可以先相加。
※有理數減法法則: 減去一個數,等於加上這個數的相反數。
¤有理數減法運算時注意兩「變」:①改變運算符號;
②改變減數的性質符號(變為相反數)
有理數減法運算時注意一個「不變」:被減數與減數的位置不能變換,也就是說,減法沒有交換律。
¤有理數的加減法混合運算的步驟:
①寫成省略加號的代數和。在一個算式中,若有減法,應由有理數的減法法則轉化為加法,然後再省略加號和括弧;
②利用加法則,加法交換律、結合律簡化計算。
(注意:減去一個數等於加上這個數的相反數,當有減法統一成加法時,減數應變成它本身的相反數。)
※有理數乘法法則: ①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘,積仍為0。
※如果兩個數互為倒數,則它們的乘積為1。(如:-2與 、 …等)
※乘法的交換律、結合律、分配律在有理數運算中同樣適用。
¤有理數乘法運算步驟:①先確定積的符號;
②求出各因數的絕對值的積。
¤乘積為1的兩個有理數互為倒數。注意:
①零沒有倒數
②求分數的倒數,就是把分數的分子分母顛倒位置。一個帶分數要先化成假分數。
③正數的倒數是正數,負數的倒數是負數。
※有理數除法法則: ①兩個有理數相除,同號得正,異號得負,並把絕對值相除。
②0除以任何非0的數都得0。0不可作為除數,否則無意義。
指數
底數

※有理數的乘方

※注意:①一個數可以看作是本身的一次方,如5=51;
②當底數是負數或分數時,要先用括弧將底數括上,再在右上角寫指數。
※乘方的運算性質:
①正數的任何次冪都是正數;
②負數的奇次冪是負數,負數的偶次冪是正數;
③任何數的偶數次冪都是非負數;
④1的任何次冪都得1,0的任何次冪都得0;
⑤-1的偶次冪得1;-1的奇次冪得-1;
⑥在運算過程中,首先要確定冪的符號,然後再計算冪的絕對值。
※有理數混合運演算法則:①先算乘方,再算乘除,最後算加減。
②如果有括弧,先算括弧裡面的。

第三章 字母表示數
※代數式的概念:
用運算符號(加、減、乘除、乘方、開方等)把數與表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;
②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
※代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數後與字母相乘,如 應寫作 ;
④數字與數字相乘,一般仍用「×」號,即「×」號不省略;
⑤在代數式中出現除法運算時,一般按照分數的寫法來寫,如4÷(a-4)應寫作 ;注意:分數線具有「÷」號和括弧的雙重作用。
⑥在表示和(或)差的代差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如 平方米
※代數式的系數:
代數式中的數字中的數字因數叫做代數式的系數。如3x,4y的系數分別為3,4。
注意:①單個字母的系數是1,如a的系數是1;
②只含字母因數的代數式的系數是1或-1,如-ab的系數是-1。a3b的系數是1
※代數式的項:
代數式 表示6x2、-2x、-7的和,6x2、-2x、-7是它的項,其中把不含字母的項叫做常數項
注意:在交待某一項時,應與前面的符號一起交待。
※同類項:
所含字母相同,並且相同字母的指數也相同的項叫做同類項。
注意:①判斷幾個代數式是否是同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。這兩個條件缺一不可;
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
※合差同類項:
把代數式中的同類項合並成一項,叫做合並同類項。
①合並同類項的理論根據是逆用乘法分配律;
②合並同類項的法則是把同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
注意:
①如果兩個同類項的系數互為相反數,合並同類項後結果為0;
②不是同類項的不能合並,不能合並的項,在每步運算中都要寫上;
③只要不再有同類項,就是最後結果,結果還是代數式。
※根據去括弧法則去括弧:
括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「-」號去掉,括弧里各項都改變符號。
※根據分配律去括弧:
括弧前面是「+」號看成+1,括弧前面是「-」號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。
※注意:
①去括弧時,要連同括弧前面的符號一起去掉;
②去括弧時,首先要弄清楚括弧前是「+」號還是「-」號;
③改變符號時,各項都變號;不改變符號時,各項都不變號。
第四章 平面圖形及位置關系
一. 線段、射線、直線
※1. 正確理解直線、射線、線段的概念以及它們的區別:
名稱
圖形
表示方法
端點
長度
直線

直線AB(或BA)
直線l
無端點
無法度量
射線

射線OM
1個
無法度量
線段

線段AB(或BA)
線段l
2個
可度量長度
※2. 直線公理:經過兩點有且只有一條直線.
b
鵬翔教圖2
A
O
B
鵬翔教圖1
二.比較線段的長短
※1. 線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離.
※2. 比較線段長短的兩種方法:
①圓規截取比較法;
②刻度尺度量比較法.
β
鵬翔教圖4
※3. 用刻度尺可以畫出線段的中點,線段的和、差、倍、分;
1
鵬翔教圖3
用圓規可以畫出線段的和、差、倍.
三.角的度量與表示
※1. 角:有公共端點的兩條射線組成的圖形叫做角;
這個公共端點叫做角的頂點;
平角
鵬翔教圖6
終邊
始邊
鵬翔教圖5
這兩條射線叫做角的邊.
※2. 角的表示法:角的符號為「∠」
①用三個字母表示,如圖1所示∠AOB
②用一個字母表示,如圖2所示∠b
③用一個數字表示,如圖3所示∠1
鵬翔教圖8
C
A
B
O
④用希臘字母表示,如圖4所示∠β

周角
鵬翔教圖7

※經過兩點有且只有一條直線。
※兩點之間的所有連線中,線段最短。
※兩點之間線段的長度,叫做這兩點之間的距離。
1º=60』 1』=60」
※角也可以看成是由一條射線繞著它的端點旋轉而成的。如圖5所示:
※一條射線繞它的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。如圖6所示:
※終邊繼續旋轉,當它又和始邊重合時,所成的角叫做周角。如圖7所示:
※從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
※經過直線外一點,有且只有一條直線與這條直線平行。
※如果兩條直線都與第三條直線平行,那麼這兩條直線互相平行。
※互相垂直的兩條直線的交點叫做垂足。
※平面內,過一點有且只有一條直線與已知直線垂直。
※如圖8所示,過點C作直線AB的垂線,垂足為O點,線段CO的長度叫做點C到直線AB的距離。
第五章 一元一次方程
※在一個方程中,只含有一個未知數x(元),並且未知數的指數是1(次),這樣的方程叫做一元一次方程。
※等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
※等式兩邊同時乘同一個數(或除以同一個不為0的數),所得結果仍是等式。
※解方程的步驟:解一元一次方程,一般要通過去分母、去括弧、移項、合並同類項、未知數的系數化為1等幾個步驟,把一個一元一次方程「轉化」成x=m的形式。
第六章 生活中的數據
※科學記數法:一般地,一個大於10的數可以表示成a×10n的形式,其中1≤a<10,n是正整數,這種記數方法叫做科學記數法。
※統計圖的特點:
折線統計圖:能夠清晰地反映同一事物在不同時期的變化情況。
條形統計圖:能夠清晰地反映每個項目的具體數目及之間的大小關系。
扇形統計圖:能夠清晰地表示各部分在總體中所佔的百分比及各部分之間的大小關系
統計圖對統計的作用:
(1)可以清晰有效地表達數據。
(2)可以對數據進行分析。
(3)可以獲得許多的信息。
(4)可以幫助人們作出合理的決策。
北師大版初一數學定理知識點匯總[七年級下冊]
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)

E. 北師大版初中數學知識點總結

我只能給你總結一些知識點,見諒見諒
初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何(我不知道你是哪裡的人,反正在我們江蘇省泰州市的中考中是這樣的)。
代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的
幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。
以上就是我對初中數學知識的總結,不過,這畢竟是我的東西,我是個高中生,初中的課本我也有一段時間沒碰過了,有遺漏之處,就要靠你的努力了(不好意思,題目我也沒有)
易錯題型你可以看看"天驕之路"叢書或上網搜索,最好是向老師要一點資料. 回答:2007-05-01 21:28 提問者對答案的評價:

F. 北師大版七年級(下)數學,知識點概括總結。

北師大版初中數學定理知識點匯總[七年級下冊(北師大版)]
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

G. 初一的數學知識點 北師大版的 完整的

第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

H. 初中數學(北師大版)全部知識點,重要知識點要標上重要,內容必須通俗易懂,要有自己總結出來的方法

初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何
代數主要有以下幾點:
1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。
2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。
3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。
4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的

幾何主要有以下幾點:
1,識別各種平面圖形和立體圖形,這你應該非常熟悉。
2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。
3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。
4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。
5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。