當前位置:首頁 » 基礎知識 » 初一的數學知識點總結
擴展閱讀
初中英語學科知識密訓班 2024-12-26 12:35:14
特殊學生如何教育輔導 2024-12-26 12:22:31

初一的數學知識點總結

發布時間: 2022-02-25 14:03:17

⑴ 初一數學知識點有哪些

初一數學知識點有:

(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸。

數軸的三要素:原點,單位長度,正方向。

(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數。(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)

(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。

2相反數知識點

(1)相反數的概念:只有符號不同的兩個數叫做互為相反數。

(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。

(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。

三角形中位線定理的作用:

位置關系:可以證明兩條直線平行。

數量關系:可以證明線段的倍分關系。

常用結論:任一個三角形都有三條中位線,由此有:

結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

結論2:三條中位線將原三角形分割成四個全等的三角形。

結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

結論4:三角形一條中線和與它相交的中位線互相平分。

結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

注意:重要輔助線:⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線。

等腰三角形的性質:

(1)等腰三角形的性質定理及推論:

定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

推論1:等腰三角形頂角平分線平分底邊並且垂直於底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

推論2:等邊三角形的各個角都相等,並且每個角都等於60°。

(2)等腰三角形的其他性質:

①等腰直角三角形的兩個底角相等且等於45°。

②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

③等腰三角形的三邊關系:設腰長為a,底邊長為b,則<a。

④等腰三角形的三角關系:設頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°-2∠B,∠B=∠C。

⑵ 初一年數學知識要點總結

要做到一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內容;二列:列出相關的知識點,標出重點、難點,列出各知識點之間的關系,這相當於寫出總結要點;三做:在此基礎上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發現問題、解決問題。最後歸納出體現所學知識的各種題型及解題方法。應該說學會總結是數學學習的最高層次。
至於知識要點,不知道你是哪個版本的書,很難總結的~~~~~

⑶ 初一上學期數學知識點歸納

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

⑷ 初一數學的知識點

不同版本學的內容不同,你學的什麼版本?至於學的哪些知識點,你看一下目錄就明白了。

⑸ 初一上學期數學知識點歸納有哪些

正數與負數

在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rational number)。

通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)。

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

圖形認識初步

幾何體也簡稱體(solid)。包圍著體的是面(surface)。

直線、射線、線段

線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度 。

角的比較與運算

如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。

如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。

等角(同角)的補角相等。

等角(同角)的餘角相等。

⑹ 初一的數學知識點

一元一次方程

1.方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

2.一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

3.解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

2有理數知識點

1.大於0的數叫做正數。

2.在正數前面加上負號「-」的數叫做負數。

3.整數和分數統稱為有理數。

4.人們通常用一條直線上的點表示數,這條直線叫做數軸。

5.在直線上任取一個點表示數0,這個點叫做原點。

6.一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

7.由絕對值的定義可知:

一個正數的絕對值是它本身;

一個負數的絕對值是它的相反數;

0的絕對值是0。

8.正數大於0,0大於負數,正數大於負數。

9.兩個負數,絕對值大的反而小。

10.有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11.有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12.有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13.有理數減法法則:減去一個數,等於加上這個數的相反數。

14.有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。

15.有理數中仍然有:乘積是1的兩個數互為倒數。

16.一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17.三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18.一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19.有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

20.兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

3不等式與不等式組

1.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

3.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

4.一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

5.不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

4整式的重要知識點

1.整式:整式為單項式和多項式的統稱。

2.整式加減

整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。

(1)去括弧:幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。

如果括弧外的因數是正數,去括弧後原括弧內的符號與原來相同。

如果括弧外的因數是負數,去括弧後原括弧內的符號與原來相反。

(2)合並同類項:

合並同類項後,所得項的系數是合並前各項系數的和,且字母部分不變。

3.單項式:由數或字母的積組成的代數式叫做單項式,單獨的一個數或一個字母也叫做單項式。

4.多項式:由若干個單項式相加組成的代數式叫做多項式。

5.同底數冪是指底數相同的冪。

6.同底數冪的乘法:同底數冪相乘,底數不變,指數相加

7.冪的乘方法則:冪的乘方,底數不變,指數相乘。

8.積的乘方:積的乘方,先把積中的每一個因數分別乘方,再把所得的冪相乘。

9.單項式與單項式相乘

單項式與單項式相乘,把它們的系數、同底數冪分別相乘,對於只在一個單項式里含有的字母,則連同它的指數作為積的一個因式。

10.單項式與多項式相乘

單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

11.多項式與多項式相乘

多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

12.同底數冪的除法:同底數冪相除,底數不變,指數相減。

13.單項式除以單項式:單項式相除,把系數、同底數冪分別相除後,作為商的因式;對於只在被除式中含有的字母,則連同它的指數一起作為商的一個因式。

14.多項式除以單項式:多項式除以單項式,先把多項式的每一項分別除以這個單項式,再把所得的商相加。

⑺ 誰那兒有初一的數學知識點總結

第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程

初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何
代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的
幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。

⑻ 初一上冊數學知識點的歸納,總結

http://wenku..com/view/f9719d0d4a7302768e993983.html

⑼ 初一數學知識點總結

第一冊

第一章 有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義

1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。

1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。
括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。
括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a• (b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。

1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同級運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0 數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。

第二章 一元一次方程
2.1從算式到方程
2.1.1一元一次方程
含有未知數的等式叫做方程。
只含有一個未知數(元),未知數的指數都是1(次),這樣的方程叫做一元一次方程。
分析實際問題中的數量關系,利用其中的相等關系列出方程,是數學解決實際問題的一種方法。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2.1.2等式的性質
等式的性質1 等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式的性質2 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2從古老的代數書說起——一元一次方程的討論⑴
把等式一邊的某項變號後移到另一邊,叫做移項。

2.3從「買布問題」說起——一元一次方程的討論⑵
方程中有帶括弧的式子時,去括弧的方法與有理數運算中括弧類似。
解方程就是要求出其中的未知數(例如x),通過去分母、去括弧、移項、合並、系數化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉化,這個過程主要依據等式的性質和運算律等。
去分母:
⑴具體做法:方程兩邊都乘各分母的最小公倍數
⑵依據:等式性質2
⑶注意事項:①分子打上括弧
②不含分母的項也要乘

2.4再探實際問題與一元一次方程

第三章 圖形認識初步
3.1多姿多彩的圖形
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。
3.1.1立體圖形與平面圖形
長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
長方形、正方形、三角形、圓等都是平面圖形。
許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
3.1.2點、線、面、體
幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。
面和面相交的地方形成線。
線和線相交的地方是點。
幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

3.2直線、射線、線段
經過兩點有一條直線,並且只有一條直線。
兩點確定一條直線。
點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
直線桑一點和它一旁的部分叫做射線。
兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

3.3角的度量
角也是一種基本的幾何圖形。
度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。
3.4角的比較與運算
3.4.1角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
3.4.2餘角和補角
如果兩個角的和等於90(直角),就說這兩個角互為餘角。
如果兩個角的和等於180(平角),就說這兩個角互為補角。
等角的補角相等。
等角的餘角相等。
本章知識結構圖

第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
4.1喜愛哪種動物的同學最多——全面調查舉例
用劃記法記錄數據,「正」字的每一劃(筆畫)代表一個數據。
考察全體對象的調查屬於全面調查。
4.2調查中小學生的視力情況——抽樣調查舉例
抽樣調查是從總體中抽取樣本進行調查,根據樣本來估計總體的一種調查。
統計調查是收集數據常用的方法,一般有全面調查和抽樣調查兩種,實際中常常採用抽樣調查的方式。調查時,可用不同的方法獲得數據。除問卷調查、訪問調查等外,查閱文獻資料和實驗也是獲得數據的有效方法。
利用表格整理數據,可以幫助我們找到數據的分布規律。利用統計圖表示經過整理的數據,能更直觀地反映數據規律。
4.3課題學習 調查「你怎樣處理廢電池?」
調查活動主要包括以下五項步驟:
一、 設計調查問卷
⑴設計調查問卷的步驟
①確定調查目的;
②選擇調查對象;
③設計調查問題
⑵設計調查問卷時要注意:
①提問不能涉及提問者的個人觀點;
②不要提問人們不願意回答的問題;
③提供的選擇答案要盡可能全面;
④問題應簡明;
⑤問卷應簡短。
二、實施調查
將調查問卷復制足夠的份數,發給被調查對象。
實施調查時要注意:
⑴向被調查者講明哪些人是被調查的對象,以及他為什麼成為被調查者;
⑵告訴被調查者你收集數據的目的。
三、處理數據
根據收回的調查問卷,整理、描述和分析收集到的數據。
四、交流
根據調查結果,討論你們小組有哪些發現和建議?
五、寫一份簡單的調查報告

第二冊

第五章 相交線與平行線
5.1相交線
5.1.1相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
5.1.2
兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
畫已知直線的垂線有無數條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

5.2平行線
5.2.1平行線
在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
在同一平面內兩條直線的關系只有兩種:相交或平行。
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。
判定兩條直線平行的方法:
方法1 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
方法3 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5.3平行線的性質
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直於兩條平行線,並且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。
5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。

第六章 平面直角坐標系
6.1平面直角坐標系
6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。
6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
6.2坐標方法的簡單應用
6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區域內一些地點分布情況平面圖的過程如下:
⑴建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;
⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;
⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
6.2.2用坐標表示平移
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。

第七章 三角形
7.1與三角形有關的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。
頂點是A、B、C的三角形,記作「△ABC」,讀作「三角形ABC」。
三角形兩邊的和大於第三邊。
7.1.2三角形的高、中線和角平分線
7.1.3三角形的穩定性
三角形具有穩定性。
7.2與三角形有關的角
7.2.1三角形的內角
三角形的內角和等於180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角。
7.3多邊形及其內角和
7.3.1多邊形
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內角和
n邊形的內角和公式:180(n-2)
多邊形的外角和等於360。
7.4課題學習 鑲嵌

第八章 二元一次方程組
8.1二元一次方程組
含有兩個未知數,並且未知數的指數都是1的方程叫做二元一次方程
把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2消元
由二元一次方程組中的一個方程,將一個未知數用含有另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。
8.3再探實際問題與二元一次方程組

第九章 不等式與不等式組
9.1不等式
9.1.1不等式及其解集
用「<」或「>」號表示大小關系的式子叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。
9.1.2不等式的性質
不等式有以下性質:
不等式的性質1 不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式的性質2 不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式的性質3 不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
9.2實際問題與一元一次不等式
解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x<a(或x>a)的形式。
9.3一元一次不等式組
把兩個不等式合起來,就組成了一個一元一次不等式組。
幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對於具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。
9.4課題學習 利用不等關系分析比賽