當前位置:首頁 » 基礎知識 » 高中數學人教版知識點總結
擴展閱讀
專插本教育機構怎麼宣傳 2025-01-15 16:50:17
同學生日送什麼生日盲盒 2025-01-15 16:36:14

高中數學人教版知識點總結

發布時間: 2022-07-27 13:52:12

1. 高中數學知識點清單

高中數學基礎知識梳理(數學小飛俠)

鏈接:https://pan..com/s/1IXqAIoe__3VdXS8yHKjxOw

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

2. 跪求高中數學選修4-1知識點總結

知識點總結
相似三角形的判定及有關性質
相似三角形的定義:對應角相等,對應邊成比例的兩個三角形叫做相似三角形。
相似三角形的預備定理:如果一條直線平行於三角形的一條邊,且這條直線與原三角形的兩條邊(或其延長線)分別相交,那麼所構成的三角形與原三角形相似。
判定定理1:兩角對應相等,兩三角形相似。
判定定理2:兩邊對應成比例且夾角相等,兩三角形相似。
判定定理3:三邊對應成比例,兩三角形相似。
直角三角形相似的判定定理:斜邊和一條直角邊對應成比例,兩直角三角形相似。
相似三角形的性質:
相似三角形對應角相等,對應邊成比例
相似三角形具有傳遞性
相似三角形對應高的比、對應中線的比和對應角平分線的比都等於相似比
相似三角形周長的比等於相似比
相似三角形面積比等於相似比的平方

直線和圓的位置關系
1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系.
①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.
①d<R,直線和圓相交.②d=R,直線和圓相切.③d>R,直線和圓相離.
2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.
3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.
切線的性質
⑴圓心到切線的距離等於圓的半徑;⑵過切點的半徑垂直於切線;⑶經過圓心,與切線垂直的直線必經過切點;⑷經過切點,與切線垂直的直線必經過圓心;當一條直線滿足(1)過圓心;(2)過切點;(3)垂直於切線三個性質中的兩個時,第三個性質也滿足.
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線.
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

圓錐曲線性質的探討
一、圓錐曲線的定義
1. 橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線。當0<E<1< SPAN>時為橢圓:當e=1時為拋物線;當e>1時為雙曲線。
二、圓錐曲線的方程
1.橢圓: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.雙曲線: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質
1.橢圓: + =1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)(5)准線:x=±
2.雙曲線: - =1(a>0, b>0)(1)范圍:|x|≥a, y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)准線:x=± (6)漸近線:y=± x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0, y∈R(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1(5)准線:x=-

【典型例題】
[例1] 如圖△ABC中,∠C,∠B的平分線相交於O,過O作AO的垂線與邊AB、AC分別交於D、E,求證:△BDO∽△BOC∽△OEC。

證明:易得AO平分∠BAC,AO⊥DE ∴ ∠ADO=∠AEO ∴ ∠BDO=∠CEO
又∠BDO=90°+ ∠BAC ∠BOC=180°- (∠ABC+∠ACB)
=90°+ ∠BAC∴ ∠BDO=∠BOC 又∠DBO=∠OBC
∴ △BDO∽△BOC 同理△ECO∽△OCB∴ △BDO∽△BOC∽△OEC
[例2] △ABE中,D、C為AB上兩點,AC=AE, ,求證:EC平分∠DEB。
證明:∵ AE=AC ∴ 即 又∵∠A=∠A ∴ △EAD∽△BAE ∴ ∠1=∠B ∵ AE=AC
∴ ∠1+∠2=∠ACE 又∵∠3+∠B=∠ACE ∴ ∠2=∠3∴ EC平分∠DEB
[例3] 已知:D、E分別在△ABC的邊AC和AB上,BD與CE交於F,其中AE=BE, , ,求 。
證明:取AD中點N,連結EN ∴ EN BD
∴ ∴
∵ ∴ × = ∵ = ∴ = = =11
[例4]如圖,直角梯形ABCD中,∠A=∠B=90°,AD‖BC,E為AB上一點,DE平分∠ADC,CE平分∠BCD,以AB為直徑的圓與邊CD有怎樣的位置關系?
解:以AB為直徑的圓與CD是相切關系 如圖,過E作EF⊥CD,垂足為F.
∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵DE平分∠ADC,CE平分∠BCD,∴ .∴以AB為直徑的圓的圓心為E,且 ,∴以AB為直徑的圓與邊CD相切.
[例5]已知:ΔABC內接於⊙O,過點A作直線EF.
⑴如圖甲,AB為直徑,要使得EF是⊙O的切線,還需添加的條件是(只需寫出三種情況):
①________; ②_________;③_________. ⑵如圖乙,AB為非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
解:⑴①∠FAB=90°.②∠B=∠EAC.③∠BAE=90°.
⑵連結AO並延長交⊙O於D,連結CD. ∵AD為⊙O的直徑,∴∠ACD=90°,∴∠D+∠CAD=90°. ∵∠D=∠B,∠B=∠CAE,∴∠CAE+∠CAD=90°,即OA⊥EF. 又∵EF經過半徑OA的外端A,∴EF為⊙O的切線.
[例6]如圖所示,AB=AC,以AB為直徑作⊙O,交BC於點D,交AC於點E,過點D作⊙O的切線DF,交AC於F,求證:(1)DF⊥AC,(2)FC=FE.
證明:(1)連結OD,AD.∵ DF為⊙O的切線,
∴ OD⊥DF(切線的性質定理).又∵ AB為⊙O的直徑,∴ AD⊥BC.又∵ AB=AC,∴D為BC中點. ∵O為AB中點,∴ ∴ DF⊥AC.
(2)連結DE.則∠DEC=∠B(圓內接四邊形的性質),又∵ AB=AC,∴∠B=∠C.
∴∠DEC=∠C,∴ DE=DC.又∵ DF⊥AC,∴ FC=EF(等腰三角形的性質)
[例7]如圖:橢圓 + =1(a>b>0),F1為左焦點,A、B是兩個頂點,P為橢圓上一點,PF1⊥x軸,且PO//AB,求橢圓的離心率e。
解:設橢圓的右焦點為F2,由第一定義:|PF1|+|PF2|=2a, ∵ PF1⊥x軸,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2,
∴ |PF1|= 。∵ PO//AB,∴ ΔPF1O∽ΔBOA,
∴ = c=b a= c, ∴ e= = 。
[例8] 已知 、 是橢圓 ( )長軸的兩個端點, 是與 垂直的弦.求直線 與 的交點M的軌跡方程.

解 如圖,由已知 軸,可設 、 .設動點M( ).∵ ( ,0)、 ( ,0)∴ 方程為 方程為 把上面兩個等式左、右分別相乘,可得: 而P ( )又在橢圓上, 即 ,變形為
即 ,代入,可得M點軌跡方程為: .
[例9] 已知橢圓 ,A(1,1),過A的直線 交橢圓於P、Q兩點,若 ,求直線 的方程.
解:設P( , ),Q( , )∵ ,由定比分點公式得: ∵ P、Q在橢圓上 ∴
整理得 解得 或
∴ 直線PQ的方程為 或

3. 最新人教版必修一高中數學知識點總結

高中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234

提取碼:1234

簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

4. 高中數學人教版必修四的知識點歸納!!!!

必修四主要介紹三角函數問題,主要要求掌握廣義角,角度制,弧度制,三角基本關系,誘導公式,三角函數(圖象和性質),和角、差角公式,倍角公式以及相公的積化和差,和差化積等公式;y=Asin(wx+a)的圖象問題,正餘弦定理等。主要是會運用知識解決實際問題,知識點都很容易理解。後面好象是向量問題。

5. 高中理科 數學 物理 化學 生物 各科總復習知識點總結

高中物理合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

簡介:高中物理優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

6. 人教版【初中數學】知識點總結-全面整理(超全)

《初中數學|升級版人教版初中數學七年級下冊》網路網盤資源免費下載

鏈接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ

提取碼:65qa

初中數學|升級版人教版初中數學七年級下冊|升級版人教版初中數學七年級上冊|升級版人教版初中數學九年級下冊|升級版人教版初中數學九年級上冊|升級版人教版初中數學八年級下冊|升級版人教版初中數學八年級上冊|人教版初中數學7年級上冊|數學初中2上15.4因式分解(一).rmvb|數學初中2上15.4因式分解(二).rmvb|數學初中2上15.3同底數冪的除法.rmvb|數學初中2上15.2乘法公式.rmvb|數學初中2上15.1整式的乘法(一).rmvb|數學初中2上15.1整式的乘法(二).rmvb|數學初中2上14.4選擇方案(一).rmvb

7. 總結高中數學知識點(人教版)

.集合、簡易邏輯
理解集合、子集、補集、交集、並集的概念;

了解空集和全集的意義;

了解屬於、包含、相等關系的意義;

掌握有關的術語和符號,並會用它們正確表示一些簡單的集合。

理解邏輯聯結詞"或"、"且"、"非"的含義;

理解四種命題及其相互關系;掌握充要條件的意義。

2.函數

了解映射的概念,在此基礎上加深對函數概念的理解。

了解函數的單調性的概念,掌握判斷一些簡單函數的單調性的方法。

了解反函數的概念及互為反函數的函數圖象間的關系,會求一些簡單函數的反函數。

理解分數指數的概念,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質。

理解對數的概念,掌握對數的運算性質;掌握對數函數的概念、圖象和性質。

能夠運用函數的性質、指數函數、對數函數的性質解決某些簡單的實際問題。

3.不等式

理解不等式的性質及其證明。

掌握兩個(不擴展到三個)正數的算術平均數不小於它們的幾何平均數的定理,並會簡單的應用。

掌握分析法、綜合法、比較法證明簡單的不等式。

掌握二次不等式,簡單的絕對值不等式和簡單的分式不等式的解法。

理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。

4.三角函數(46課時)

理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。

掌握任意角的正弦、餘弦、正切的定義,

並會利用單位圓中的三角函數線表示正弦、餘弦和正切。

了解任意角的餘切、正割、餘割的定義;

掌握同角三角函數的基本關系式:

掌握正弦、餘弦的誘導公式。

掌握兩角和與兩角差的正弦、餘弦、正切公式;

掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯系,從而培養邏輯推理能力。

能正確運用三角公式,進行簡單三角函數式的化簡、求值和恆等式證明(包括引出積化和差、和差化積、半形公式,但不要求記憶)。

了解周期函數與最小正周期的意義;

了解奇偶函數的意義;並通過它們的圖象理解正弦函數、餘弦函數、正切函數的性質;以及簡化這些函數圖象的繪制過程;

會用"五點法"畫正弦函數、餘弦函數和函數y=Asin(ωx+φ)的簡圖,理解A、ω、φ的物理意義。

會由已知三角函數值求角,並會用符號 arcsin x、arccos x、arctan x表示。

掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。

5.平面向量

理解向量的概念,掌握向量的幾何表示,

了解共線向量的概念。

掌握向量的加法與減法。

掌握實數與向量的積,理解兩個向量共線的充要條件。

了解平面向量的基本定理,

理解平面向量的坐標的概念,

掌握平面向量的坐標運算。

掌握平面向量的數量積及其幾何意義,

了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。

掌握平面兩點間的距離公式,

掌握線段的定比分點和中點坐標公式,並且能熟練運用;

掌握平移公式。

6.數列

理解數列的概念,

了解數列通項公式的意義;

了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。

理解等差數列的概念,

掌握等差數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。

理解等比數列的概念

掌握等比數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。

7.直線和圓的方程

理解直線的傾斜角和斜率的概念,

掌握過兩點的直線的斜率公式,

掌握直線方程的點斜式、兩點式和直線方程的一般式,並能根據條件熟練地求出直線的方程。

掌握兩條直線平行與垂直的條件,

掌握兩條直線所成的角和點到直線的距離公式;

能夠根據直線的方程判斷兩條直線的位置關系。

會用二元一次不等式表示平面區域。

了解簡單的線性規劃問題,了解線性規劃的意義,並會簡單應用。

掌握圓的標准方程和一般方程,

了解參數方程的概念,理解圓的參數方程。

8.圓錐曲線方程

掌握橢圓的定義、標准方程和橢圓的簡單幾何性質;

理解橢圓的參數方程。

掌握雙曲線的定義、標准方程和雙曲線的簡單幾何性質。

掌握拋物線的定義、標准方程和拋物線的簡單幾何性質。

9.直線、平面、簡單幾何體

掌握平面的基本性質,會用斜二測的畫法畫水平放置的平面圖形的直觀圖;

能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據圖形想像它們的位置關系。

掌握兩條直線平行與垂直的判定定理和性質定理;

掌握兩條直線所成的角和距離的概念(對於異面直線的距離,只要求會利用給出的公垂線計算距離)。

掌握直線和平面平行的判定定理和性質定理;

掌握直線和平面垂直的判定定理和性質定理;

掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念;

了解三垂線定理及其逆定理。

掌握兩個平面平行的判定定理和性質定理;

掌握二面角、二面角的平面角、兩個平行平面間的距離的概念;

掌握兩個平面垂直的判定定理和性質定理。

進一步熟悉反證法,會用反證法證明簡單的問題。

了解多面體的概念,了解凸多面體的概念。

了解稜柱的概念,掌握稜柱的性質,會畫直稜柱的直觀圖。

了解棱錐的概念,掌握正棱錐的性質,會畫正棱錐的直觀圖。

了解正多面體的概念,了解多面體的歐拉公式。

了解球的概念,掌握球的性質,掌握球的表面積和體積公式。

10.排列、組合、二項式定理

掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的應用問題。

理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的應用問題。

理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的應用問題。

掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。

11.概率

了解隨機事件的統計規律性和隨機事件概率的意義。

了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

了解互斥事件的意義,會用互斥事件的概率加法公式計算一些事件的概率。

了解相互獨立事件的意義,會用相互獨立事件的概率乘法公式計算一些事件的概率。

會計算事件在 n 次獨立重復試驗中恰好發生 k 次的概率。

選修Ⅰ

1.統計

了解隨機抽樣、分層抽樣的意義,會用它們對簡單實際問題進行抽樣;

會用樣本頻率分布估計總體分布,

會利用樣本估計總體期望值和方差,體會如何從數據中提取信息並作出統計推斷。

2.導數

理解導數是平均變化率的極限;理解導數的幾何意義。

掌握函數 的導數公式,會求多項式函數的導數。

理解極大值、極小值、最大值、最小值的概念,

會用導數求多項式函數的單調區間、極大值、極小值及閉區間上的最大值和最小值。

選修Ⅱ

1.概率與統計

了解離散型隨機變數的意義,

會求出某些簡單的離散型隨機變數的分布列。

了解離散型隨機變數的期望值、方差的意義,會根據離散型隨機變數的分布列求出期望值、方差。

會用隨機抽樣、系統抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。

會用樣本頻率分布估計總體分布。

了解正態分布的意義及主要性質。

了解線性回歸的方法和簡單應用。

2. 極限

理解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

從數列和函數的變化趨勢了解數列極限和函數極限的概念。

掌握極限的四則運演算法則;會求某些數列與函數的極限。

了解連續的意義,藉助幾何直觀理解閉區間上連續函數有最大值和最小值的性質。

3.導數

了解導數概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);

掌握函數在一點處的導數的定義和導數的幾何意義;

理解導函數的概念。

熟記基本導數公式(c,xm(m為有理數), sin x, cos x, ex, ax, ln x,logax的導數);

掌握兩個函數和、差、積、商的求導法則;

了解復合函數的求導法則,會求某些簡單函數的導數。

會從幾何直觀了解可導函數的單調性與其導數的關系;了解可導函數在某點取得極值的必要條件和充分條件(導數在極值點兩側異號);會求一些實際問題(一般指單峰函數)的最大值和最小值。

4.數系的擴充--復數

理解復數的有關概念;

掌握復數的代數表示與幾何意義。

掌握復數代數形式的運演算法則,能進行復數代數形式的加、減、乘、除運算。