當前位置:首頁 » 基礎知識 » 數學八上多邊形知識點
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

數學八上多邊形知識點

發布時間: 2022-07-27 04:47:11

『壹』 初二上冊數學的知識點

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角

『貳』 八上數學題(多邊形)

多邊形的每個外角都等於於它相鄰的內角 是等邊多邊形 各個內角相等
1 四邊形 90度(內角+外角=180度,內角=外角)
2,每個內角150度,(內角+外角=180度,內角=5外角),看看有沒有一個等邊多邊形的各個內角是150度就可以了

1. 每個外角都等於於它相鄰的內角,各個內角(外角)都相等,是正多邊形(內角+外角=180度,內角=外角) 內角=外角=90度,是正方形(矩形也符合特殊)
2,設是X邊形,已知內角150度,150*X=(X-2)*180
X=12

『叄』 跪求北師大版八年級上冊數學的所有概念

北師大版初中數學定理知識點匯總八年級(上冊)
第一章 勾股定理
※直角三角形兩直角邊的平和等於斜邊的平方。即:
(由直角三角形得到邊的關系)
如果三角形的三邊長a,b,c滿足 ,那麼這個三角形是直角三角形。
滿足條件 的三個正整數,稱為勾股數。常見的勾股數組有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)
第二章 實數
※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
※正數有兩個平方根(一正一負);0隻有一個平方根,就是它本身;負數沒有平方根。
※正數的立方根是正數;0的立方根是0;負數的立方根是負數。

第三章 圖形的平移與旋轉
平移:在平面內,將一個圖形沿某個方向移動一定距離,這樣的圖形運動稱為平移。
平移的基本性質:經過平移,對應線段、對應角分別相等;對應點所連的線段平行且相等。
旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。
這個定點叫旋轉中心,轉動的角度叫旋轉角。
旋轉的性質:旋轉後的圖形與原圖形的大小和形狀相同;
旋轉前後兩個圖形的對應點到旋轉中心的距離相等;
對應點到旋轉中心的連線所成的角度彼此相等。
(例:如圖所示,點D、E、F分別為點A、B、C的對應點,經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。)
第四章 四平邊形性質探索
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※多邊形內角和:n邊形的內角和等於(n-2)·180°
※多邊形的外角和都等於360°
※在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖開叫做中心對稱圖形。
※中心對稱圖形上的每一對對應點所連成的線段被對稱中心平分。
第五章 位置的確定
※平面直角坐標系概念:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫x軸或橫軸;鉛垂的數軸叫y軸或縱軸,兩數軸的交點O稱為原點。
※點的坐標:在平面內一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數a、b分別叫P點的橫坐標和縱坐標,則有序實數對(a、b)叫做P點的坐標。
※在直角坐標系中如何根據點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。
※如何根據已知條件建立適當的直角坐標系?
根據已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:①以某已知點為原點,使它坐標為(0,0);②以圖形中某線段所在直線為x軸(或y軸);③以已知線段中點為原點;④以兩直線交點為原點;⑤利用圖形的軸對稱性以對稱軸為y軸等。
※圖形「縱橫向伸縮」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:①當n>1時,伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別變成原來的n倍時,所得的圖形比原來的圖形在縱向:①當n>1時, 伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
※圖形「縱橫向位置」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個單位。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個單位。
※圖形「倒轉與對稱」的變化規律:
A、將圖形上各個點的橫坐標不變,縱坐標分別乘以-1,所得的圖形與原來的圖形關於x軸對稱。
B、將圖形上各個點的縱坐標不變,橫坐標分別乘以-1,所得的圖形與原來的圖形關於y軸對稱。
※圖形「擴大與縮小」的變化規律:
將圖形上各個點的縱、橫坐標分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;①當n>1時,對應線段大小擴大到原來的n倍;②當0<n<1時,對應線段大小縮小到原來的n倍。

第六章 一次函數
若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

※正比例函數y=kx的圖象是經過原點(0,0)的一條直線。
※在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

第七章 二元一次方程組
※含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 兩個一次方程所組成的一組方程叫做二元一次方程組。
※解二元一次方程組:①代入消元法; ②加減消元法(無論是代入消元法還是加減消元法,其目的都是將「二元一次方程」變為「一元一次方程」,所謂之「消元」)
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x或y;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:

第八章 數據的代表
※加權平均數:一組數據 的權分加為 ,則稱 為這n個數的加權平均數。 (如:對某同學的數學、語文、科學三科的考查,成績分別為72,50,88,而三項成績的「權」分別為4、3、1,則加權平均數為: )
※一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
※一組數據中出現次數最多的那個數據叫做這組數據的眾數。
※眾數著眼於對各數據出現次數的考察,中位數首先要將數據按大小順序排列,而且要注意當數據個數為奇數時,中間的那個數據就是中位數;當數據個數為偶數時,居於中間的兩個數據的平均數才是中位數,特別要注意一組數據的平均數和中位數是唯一的,但眾數則不一定是唯一的。

『肆』 新人教版八年級上數學教材目錄

第十一章三角形
11.1與三角形有關的線段
信息技術應用 畫圖找規律
11.2 與三角形有關的角
閱讀與思考 為什麼要證明
11.3 多邊形及其內角和
數學活動
小結
復習題11


第十二章全等三角形
12.1 全等三角形
12.2 三角形全等的判定
信息技術應用 探究三角形全等的條件
12.3 角的平分線的性質
數學活動
小結
復習題12


第十三章軸對稱
13.1 軸對稱
13.2 畫軸對稱圖形
信息技術應用 用軸對稱進行圖案設計
13.3 等腰三角形
實驗與探究 三角形中邊與角之間的不等關系
13.4 課題學習最短路徑問題
數學活動
小結
復習題13


第十四章整式的乘法與因式分解
14.1 整式的乘法
14.2 乘法公式
閱讀與思考 楊輝三角
14.3 因式分解
數學活動
小結
復習題14


第十五章分式
15.1 分式
15.2 分式的運算
閱讀與思考 容器中的水能倒完吧
15.3 分式方程
數學活動
小結
復習題15
部分中英文詞彙索引

拓展資料:

八年級數學上冊知識點總結(新人教版)

第十三章 軸對稱
一、軸對稱圖形
1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關於這條直線(成軸)對稱。


2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點。

3、軸對稱圖形和軸對稱的區別與聯系

4.軸對稱的性質
①關於某直線對稱的兩個圖形是全等形。
②如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那麼這兩個圖形關於這條直線對稱。


二、線段的垂直平分線


1. 經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

2.線段垂直平分線上的點與這條線段的兩個端點的距離相等

3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上

三、用坐標表示軸對稱小結:

  1. 在平面直角坐標系中,關於x軸對稱的點橫坐標相等,縱坐標互為相反數.關於y軸對稱的點橫坐標互為相反數,縱坐標相等.

2.三角形三條邊的垂直平分線相交於一點,這個點到三角形三個頂點的距離相等。


四、(等腰三角形)知識點回顧
1.等腰三角形的性質
①.等腰三角形的兩個底角相等。(等邊對等角)
②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等。(等角對等邊)

五、(等邊三角形)知識點回顧
1.等邊三角形的性質:
等邊三角形的三個角都相等,並且每一個角都等於600 。
2、等邊三角形的判定:
①三個角都相等的三角形是等邊三角形。
②有一個角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等於300,那麼它所對的直角邊等於斜邊的一半。

『伍』 八年級上冊數學知識點歸納、總結 人教版、

一.整式
1.1:加減
1.2:乘法
1.3:公式:1.平方差
2.完全平方
1.4:除法
1.5:因式分解
二.分式
2.1:定義
2.2:運算
2.3:方程
三.反比例函數
3.1:定義
3.2:利用反比例函數解決實際問題
四.軸對稱
4.1:定義
4.2:軸對稱變換
4.3:等腰三角形
五.總復習
回答者: 鄭長春123 - 門吏 二級 2-15 14:09
=======================================================
知 識 點 能力要求 了解 理解 掌握 應用 軸對稱圖形、軸對稱的概念 √ 軸對稱圖形的對稱軸及軸對稱的對稱軸、對稱點 √ 軸對稱圖形與軸對稱的區別和聯系 √ 線段垂直平分線的定義和性質 √ 成軸對稱的兩個圖形的性質 √ 利用軸對稱的性質作簡單的軸對稱 √ 利用軸對稱進行圖案設計 √ 對稱圖案中顏色的對稱 √ 利用網格設計軸對稱圖案 √ 線段是軸對稱圖形 √ 線段的垂直平分線的性質 √ 角是軸對稱圖形 √ 角平分線的性質 √ 等腰三角形的軸對稱性 √ 等腰三角形的性質 √ √ 等腰三角形三線合一的性質 √ 運用等腰三角形的性質解決問題 √ 等邊三角形及直角三角形的性質 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性質 √ 梯形輔助線的幾種作法 √ 等腰梯形同一底上的兩個內角相等、兩條對角線相等 √ 等腰梯形是軸對稱圖形 √ 等腰梯形的判定 √ 蘇科版八年級數學(上)知識點系目表 2008.9 勾股定理 √ 面積法證明勾股定理 √ 直角三角形的判定條件 √ 利用直角三角形的判定條件判定三角形 √ 勾股定理的實際應用 √ 勾股數的概念 √ 平方根的概念 √ 求一個非負數的平方根 √ 平方根的性質 √ 開平方的概念 √ , √ 立方根的概念 √ 求一個實數的立方根 √ 立方根的性質 √ 開立方的概念 √ 無理數、實數的概念 √ 實數的分類 √ 實數的大小比較 √ 用計算器計算 √ 實數范圍內的運算 √ 近似數的概念 √ 根據要求取近似數 √ 有效數字的概念 √ 1.旋轉的基本性質。 √ 2.按要求作出簡單的平面圖形通過旋轉後的形 √ 3.中心對稱及中心對稱圖形的有關概念和性質 √ 4.畫出已知圖形成中心對稱,會設計中心對稱案 √ 5.平行四邊形的性質; √ 6.運用平行四邊形的性質解決實際問題 √ 7.平行四邊形的判定方法 √ 8.運用平行四邊形的判定和性質解決實際問題; √ 9矩形、菱形、正方形的概念及其特殊的性質。 √ 10.矩形、菱形、正方形的判斷方法,運用矩形、菱形、正方形的判定和性質解決實際問題 √ 11.三角形中位線概念、性質. √ 12.會利用三角形的中位線的性質解決有關問題. √ 13.梯形的中位線的概念和性質; √ 14.能應用梯形的中位線的性質解決有關問題 √ 15.理解鑲嵌的意義,進行簡單的鑲嵌設計 √ 1、感受可以用多種方法記錄、描繪後表示變化的數量及變化規律 √ 2、能根據圖表所提供的信息,探索數量變化的某些聯系 √ 3、會描述物體運動的路徑 √ 4、能根據經緯度確定移動物體位置變化的路徑 √ 5、會用變化的數量描繪物體位置的變化 √ 6、領會實際模型中確定位置的方法,會正確畫出平面直角坐標系 √ 7、在給定的直角坐標系中,根據點的坐標描出點的位置 √ 8、在給定的直角坐標系中,會由點的位置寫出點的坐標 √ 9、在同一直角坐標系中,探索位置變化與數量變化的關系 √ 10、在同一直角坐標系中,探索圖形位置的變化與點的坐標變化的關系 √ 11、能建立適當直角坐標系,將實際問題數學化,並會用直角坐標系解決問題 √ 常量、變數意義 √ 函數概念和三種表示方法 √ 結合圖象分析實際問題中的函數關系 √ 確定自變數的取值范圍 √ 求函數值 √ 正比例函數概念 √ 一次函數概念 √ 根據已知條件確定一次函數解析式 √ 會畫一次函數圖象 √ 正比例函數圖象性質 √ 一次函數圖象性質 √ 一次函數圖象的性質(k>0或k<0圖象的變化) √ 直線在平面直角坐標系中的平移 √ 直線與直線的對稱 √ 直線的旋轉 √ 平面直角坐標系中的面積 √ 一次函數解決實際問題 √ 對變數的變化規律進行初步預測 √ 圖象發求二元一次方程組的解 √ 1.算術平均數和加權平均數的意義。 √ 2.求一組數據的算術平均數和加權平均數。 √ 3.權的差異對平均數的影響。 √ 4.算術平均數與加權平均數的聯系與區別。 √ 5.利用算術平均數和加權平均數解決實際問題。 √ 6.中位數和眾數代表的概念。 √ 7.根據所給的信息求出一組數據的中位數、眾數。 √ 8.平均數、中位數、眾數的區別與聯系。 √ 9選擇合適的統計量表示數據的集中程度。 √ 10.利用計算器求一組數據的平均數。 √ 11.經歷數據的收集、加工、整理和描述的統計過程,提高數據處理能力,發展統計意識。 (去買本老師用書)

給些例題
小結
例題:
1、一次函數:若兩個變數x,y存在關系為y=kx+b (k≠0, k,b為常數)的形式,則稱y是x的函數。
注意:(1)k≠0,否則自變數x的最高次項的系數不為1;
(2)當b=0時,y=kx,y叫x的正比例函數。
2、圖象:一次函數的圖象是一條直線
(1)兩個常有的特殊點:與y軸交於(0,b);與x軸交於(- ,0)。

(2)正比例函數y=kx(k≠0)的圖象是經過(0,0)和(1,k)的一條直線;一次函數y=kx+b(k≠0)的圖象是經過(- ,0)和(0,b)的一條直線。

(3)由圖象可以知道,直線y=kx+b與直線y=kx平行,例如直線:y=2x+3與直線y=2x-5都與直線y=2x平行。
3、一次函數圖象的性質:
(1)圖象在平面直角坐標系中的位置:

(2)增減性:

k>0時,y隨x增大而增大;
k<0時,y隨x增大而減小。
4、求一次函數解析式的方法
求函數解析式的方法主要有三種:
一是由已知函數推導,如例題1;
二是由實際問題列出兩個未知數的方程,再轉化為函數解析式,如例題4的第一問。
三是用待定系數法求函數解析式,如例2的第二小題、例7。
其步驟是:①根據題給條件寫出含有待定系數的解析式;②將x、y的幾對值或圖象上幾個點的坐標代入上述的解析式中,得到以待定系數為未知數的方程或方程組;③解方程,得到待定系數的具體數值;④將求出的待定系數代入要求的函數解析式中。
二、例題舉例:
例1、已知變數y與y1的關系為y=2y1,變數y1與x的關系為y1=3x+2,求變數y與x的函數關系。
分析:已知兩組函數關系,其中共同的變數是y1,所以通過y1可以找到y與x的關系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即變數y與x的關系為:y=6x+4。
例2、解答下列題目
(1)(甘肅省中考題)已知直線 與y軸交於點A,那麼點A的坐標是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考題)已知正比例函數 ,當x=–3時,y=6.那麼該正比例函數應為( )。
(A) (B) (C) (D)

(3)(福州市中考題)一次函數y=x+1的圖象,不經過的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析與答案:
(1) 直線與y軸交點坐標,特點是橫坐標是0,縱坐標可代入函數關系求得。
或者直接利用直線和y軸交點為(0,b),得到交點(0,3),答案為D。
(2) 求解析式的關鍵是確定系數k,本題已知x=-3時,y=6,代入到y=kx中,解析式可確定。答案D: y=-2x。
(3) 由一次函數y=kx+b的圖象性質,有以下結論:

題目中y=x+1,k=1>0,則函數圖象必過一、三象限;b=1>0,則直線和y軸交於正半軸,可以判定直線位置,也可以畫草圖,或取兩個點畫草圖判斷,圖像不過第四象限。

答案:D。

例3、(遼寧省中考題)某單位急需用車;但又不準備買車,他們准備和一個體車主或一國營計程車公司其中的一家簽訂月租車合同。設汽車每月行駛x千米,應付給個體車主的月費用是y1元,應付給計程車公司的月費用是y2元,y1、y2分別與x之間的函數關系圖象(兩條射線)如圖,觀察圖象回答下列問題:
(1)每月行駛的路程在什麼范圍內時,租國營公司的車合算?
(2)每月行駛的路程等於多少時,租兩家車的費用相同?
(3)如果這個單位估計每月行駛的路程為2300千米,那麼這個單位租哪家的車合算?

分析:因給出了兩個函數的圖象可知一個是一次函數,一個是一次函數的特殊形式正比例函數,兩條直線交點的橫坐標為1500,表明當x=1500時,兩條直線的函數值y相等,並且根據圖像可以知道x>1500時,y2在y1上方;0<x<1500時,y2在y1下方。利用圖象,三個問題很容易解答。
答:(1)每月行駛的路程小於1500千米時,租國營公司的車合算。
[或答:當0≤x<1500(千米)時,租國營公司的車合算]。
(2)每月行駛的路程等於1500千米時,租兩家車的費用相同。
(3)如果每月行駛的路程為2300千米,那麼這個單位租個體車主的車合算。
例4、(河北省中考題)某工廠有甲、乙兩條生產線先後投產。在乙生產線投產以前,甲生產線已生產了200噸成品;從乙生產線投產開始,甲、乙兩條生產線每天分別生產20噸和30噸成品。
(1)分別求出甲、乙兩條生產線投產後,各自總產量y(噸)與從乙開始投產以來所用時間x(天)之間的函數關系式,並求出第幾天結束時,甲、乙兩條生產線的總產量相同;
(2)在如圖所示的直角坐標系中,作出上述兩個函數在第一象限內的圖象;觀察圖象,分別指出第15天和第25天結束時,哪條生產線的總產量高?

分析:(1)根據給出的條件先列出y與x的函數式, =20x+200, =30x,當 = 時,求出x。
(2)在給出的直角坐標系中畫出兩個函數的圖象,根據點的坐標可以看出第15天和25天結束時,甲、乙兩條生產線的總產量的高低。

解:(1)由題意可得:
甲生產線生產時對應的函數關系式是:y=20x+200,
乙生產線生產時對應的函數關系式是:y=30x,
令20x+200=30x,解得x=20,即第20天結束時,兩條生產線的產量相同。
(2)由(1)可知,甲生產線所對應的生產函數圖象一定經過兩點A(0,200)和
B(20,600);
乙生產線所對應的生產函數圖象一定經過兩點O(0,0)和B(20,600)。
因此圖象如右圖所示,由圖象可知:第15天結束時,甲生產線的總產量高;第25天結束時,乙生產線的總產量高。
例5.直線y=kx+b與直線y=5-4x平行,且與直線y=-3(x-6)相交,交點在y軸上,求此直線解析式。
分析:直線y=kx+b的位置由系數k、b來決定:由k來定方向,由b來定與y軸的交點,若兩直線平行,則解析式的一次項系數k相等。例如y=2x,y=2x+3的圖象平行。
解:∵ y=kx+b與y=5-4x平行,
∴ k=-4,
∵ y=kx+b與y=-3(x-6)=-3x+18相交於y軸,
∴ b=18,
∴ y=-4x+18。
說明:一次函數y=kx+b圖象的位置由系數k、b來決定:由k來定方向,由b來定點,即函數圖象平行於直線y=kx,經過(0,b)點,反之亦成立,即由函數圖象方向定k,由與y軸交點定b。
例6.直線與x軸交於點A(-4,0),與y軸交於點B,若點B到x軸的距離為2,求直線的解析式。
解:∵ 點B到x軸的距離為2,
∴ 點B的坐標為(0,±2),
設直線的解析式為y=kx±2,
∵ 直線過點A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直線AB的解析式為y= x+2或y=- x-2。

說明:此例看起來很簡單,但實際上隱含了很多推理過程,而這些推理是求一次函數解析式必備的。
(1)圖象是直線的函數是一次函數;
(2)直線與y軸交於B點,則點B(0,yB);
(3)點B到x軸距離為2,則|yB|=2;
(4)點B的縱坐標等於直線解析式的常數項,即b=yB;
(5)已知直線與y軸交點的縱坐標yB,可設y=kx+yB;
下面只需待定k即可。
三、提高與思考
例1.已知一次函數y1=(n-2)x+n的圖象與y軸交點的縱坐標為-1,判斷y2=(3- )xn+2是什麼函數,寫出兩個函數的解析式,並指出兩個函數在直角坐標系中的位置及增減性。
解:依題意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函數;
y1=-3x-1的圖象經過第二、三、四象限,y1隨x的增大而減小;
y2=(3- )x的圖象經過第一、三象限,y2隨x的增大而增大。
說明:由於一次函數的解析式含有待定系數n,故求解析式的關鍵是構造關於n的方程,此題利用「一次函數解析式的常數項就是圖象與y軸交點縱坐標」來構造方程。
例2.已知一次函數的圖象,交x軸於A(-6,0),交正比例函數的圖象於點B,且點B在第三象限,它的橫坐標為-2,△AOB的面積為6平方單位,求正比例函數和一次函數的解析式。
分析:自畫草圖如下:
解:設正比例函數y=kx,
一次函數y=ax+b,
∵ 點B在第三象限,橫坐標為-2,
設B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把點B(-2,-2)代入正比例函數y=kx,得k=1,
把點A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

說明:(1)此例需要利用正比例函數、一次函數定義寫出含待定系數的結構式,注意兩個函數中的系數要用不同字母表示;
(2)此例需要把條件(面積)轉化為點B的坐標。這個轉化實質含有兩步:一是利用面積公式 AO•

BD=6(過點B作BD⊥AO於D)計算出線段長BD=2,再利用|yB|=BD及點B在第三象限計算出yB=-2。若去掉第三象限的條件,想一想點B的位置有幾種可能,結果會有什麼變化?(答:有兩種可能,點B可能在第二象限(-2,2),結果增加一組y=-x, y= (x+3)。 (有答案,自己去看吧)

1 全等三角形的對應邊、對應角相等 ­

2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ­

3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ­

4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ­

5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ­

6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ­

7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ­

8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ­

9 角的平分線是到角的兩邊距離相等的所有點的集合 ­

10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ­

21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ­

22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ­

23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ­

24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ­

25 推論1 三個角都相等的三角形是等邊三角形 ­

26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ­

27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ­

28 直角三角形斜邊上的中線等於斜邊上的一半 ­

29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ­

30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ­

31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ­

32 定理1 關於某條直線對稱的兩個圖形是全等形 ­

33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ­

34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ­

35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ­

36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ­

38定理 四邊形的內角和等於360° ­

39四邊形的外角和等於360° ­

40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ­

41推論 任意多邊的外角和等於360° ­

42平行四邊形性質定理1 平行四邊形的對角相等 ­

43平行四邊形性質定理2 平行四邊形的對邊相等 ­

44推論 夾在兩條平行線間的平行線段相等 ­

45平行四邊形性質定理3 平行四邊形的對角線互相平分 ­

46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ­

47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ­

48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ­

49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ­

50矩形性質定理1 矩形的四個角都是直角 ­

51矩形性質定理2 矩形的對角線相等 ­

52矩形判定定理1 有三個角是直角的四邊形是矩形 ­

53矩形判定定理2 對角線相等的平行四邊形是矩形 ­

54菱形性質定理1 菱形的四條邊都相等 ­

55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ­

56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四邊都相等的四邊形是菱形 ­

58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ­

59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ­

60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ­

61定理1 關於中心對稱的兩個圖形是全等的 ­

62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ­

63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ­

點平分,那麼這兩個圖形關於這一點對稱 ­

64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ­

65等腰梯形的兩條對角線相等 ­

66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ­

67對角線相等的梯形是等腰梯形 ­

68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ­

相等,那麼在其他直線上截得的線段也相等 ­

69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ­

70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ­

三邊 ­

71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ­

的一半 ­

72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ­

一半 L=(a+b)÷2 S=L×h ­

『陸』 數學八年級上冊知識點,要總結歸納

八年級上冊數學復習提綱
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬

『柒』 冀教版八年級上數學知識點總結

1 全等三角形的對應邊、對應角相等 ­

2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ­

3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ­

4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ­

5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ­

6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ­

7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ­

8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ­

9 角的平分線是到角的兩邊距離相等的所有點的集合 ­

10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ­

21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ­

22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ­

23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ­

24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ­

25 推論1 三個角都相等的三角形是等邊三角形 ­

26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ­

27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ­

28 直角三角形斜邊上的中線等於斜邊上的一半 ­

29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ­

30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ­

31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ­

32 定理1 關於某條直線對稱的兩個圖形是全等形 ­

33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ­

34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ­

35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ­

36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ­

38定理 四邊形的內角和等於360° ­

39四邊形的外角和等於360° ­

40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ­

41推論 任意多邊的外角和等於360° ­

42平行四邊形性質定理1 平行四邊形的對角相等 ­

43平行四邊形性質定理2 平行四邊形的對邊相等 ­

44推論 夾在兩條平行線間的平行線段相等 ­

45平行四邊形性質定理3 平行四邊形的對角線互相平分 ­

46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ­

47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ­

48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ­

49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ­

50矩形性質定理1 矩形的四個角都是直角 ­

51矩形性質定理2 矩形的對角線相等 ­

52矩形判定定理1 有三個角是直角的四邊形是矩形 ­

53矩形判定定理2 對角線相等的平行四邊形是矩形 ­

54菱形性質定理1 菱形的四條邊都相等 ­

55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ­

56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四邊都相等的四邊形是菱形 ­

58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ­

59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ­

60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ­

61定理1 關於中心對稱的兩個圖形是全等的 ­

62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ­

63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ­

點平分,那麼這兩個圖形關於這一點對稱 ­

64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ­

65等腰梯形的兩條對角線相等 ­

66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ­

67對角線相等的梯形是等腰梯形 ­

68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ­

相等,那麼在其他直線上截得的線段也相等 ­

69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ­

70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ­

三邊 ­

71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ­

的一半 ­

72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ­

一半 L=(a+b)÷2 S=L×h ­

73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ­

如果ad=bc,那麼a:b=c:d ­

74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ­

75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ­

(a+c+…+m)/(b+d+…+n)=a/b ­

76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ­

線段成比例 ­

77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ­

78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ­

79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ­

80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ­

81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ­

82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ­

83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ­

84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ­

85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ­

角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 ­

86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ­

分線的比都等於相似比 ­

87 性質定理2 相似三角形周長的比等於相似比 ­

88 性質定理3 相似三角形面積的比等於相似比的平方 ­

89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 ­

於它的餘角的正弦值 ­

90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 ­

於它的餘角的正切值 ­

91圓是定點的距離等於定長的點的集合 ­

92圓的內部可以看作是圓心的距離小於半徑的點的集合 ­

93圓的外部可以看作是圓心的距離大於半徑的點的集合 ­

94同圓或等圓的半徑相等 ­

95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 ­

徑的圓 ­

96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ­

平分線 ­

97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ­

98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ­

離相等的一條直線 ­

99定理 不在同一直線上的三點確定一個圓。 ­

100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 ­

101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ­

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ­

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 ­

102推論2 圓的兩條平行弦所夾的弧相等 ­

103圓是以圓心為對稱中心的中心對稱圖形 ­

104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ­

相等,所對的弦的弦心距相等 ­

105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ­

弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 ­

106定理 一條弧所對的圓周角等於它所對的圓心角的一半 ­

107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ­

108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ­

對的弦是直徑 ­

109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 ­

110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 ­

的內對角 ­

111①直線L和⊙O相交 d<r ­

②直線L和⊙O相切 d=r ­

③直線L和⊙O相離 d>r ­

112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 ­

113切線的性質定理 圓的切線垂直於經過切點的半徑 ­

114推論1 經過圓心且垂直於切線的直線必經過切點 ­

115推論2 經過切點且垂直於切線的直線必經過圓心 ­

116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ­

圓心和這一點的連線平分兩條切線的夾角 ­

117圓的外切四邊形的兩組對邊的和相等 ­

118弦切角定理 弦切角等於它所夾的弧對的圓周角 ­

119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 ­

120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ­

相等 ­

121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 ­

兩條線段的比例中項 ­

122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ­

線與圓交點的兩條線段長的比例中項 ­

123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ­

124如果兩個圓相切,那麼切點一定在連心線上 ­

125①兩圓外離 d>R+r ②兩圓外切 d=R+r ­

③兩圓相交 R-r<d<R+r(R>r) ­

④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r) ­

126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ­

127定理 把圓分成n(n≥3): ­

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ­

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ­

128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ­

129正n邊形的每個內角都等於(n-2)×180°/n ­

130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ­

131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ­

132正三角形面積√3a/4 a表示邊長 ­

133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 ­

360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ­

134弧長計算公式:L=n兀R/180 ­

135扇形面積公式:S扇形=n兀R^2/360=LR/2 ­

136內公切線長= d-(R-r) 外公切線長= d-(R+r)­

『捌』 初二數學上的知識點

這個肯定行

初二數學(上)應知應會的知識點
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的最大公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 ? 」.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統稱有理式;即 .
3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;

(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負整指數計演算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數的最小公倍數?相同因式的最高次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數,a和b是用字母表示的已知數,對x來說,字母a是x的系數,叫做字母系數,字母b是常數項,我們稱它為含有字母系數的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數,用x、y、z等表示未知數.
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數的方程.特別要注意:字母方程兩邊同時乘以含字母的代數式時,一般需要先確認這個代數式的值不為0.
15.分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根.
18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加「驗增根」的程序.
數的開方
1.平方根的定義:若x2=a,那麼x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數,(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質:
(1)正數的平方根是一對相反數;
(2)0的平方根還是0;
(3)負數沒有平方根.
3.平方根的表示方法:a的平方根表示為 和 .注意: 可以看作是一個數,也可以認為是一個數開二次方的運算.
4.算術平方根:正數a的正的平方根叫a的算術平方根,表示為 .注意:0的算術平方根還是0.
5.三個重要非負數: a2≥0 ,|a|≥0 , ≥0 .注意:非負數之和為0,說明它們都是0.
6.兩個重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定義:若x3=a,那麼x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數;(2)a的立方根表示為 ;即把a開三次方.
8.立方根的性質:
(1)正數的立方根是一個正數;
(2)0的立方根還是0;
(3)負數的立方根是一個負數.
9.立方根的特性: .
10.無理數:無限不循環小數叫做無理數.注意:?和開方開不盡的數是無理數.
11.實數:有理數和無理數統稱實數.
12.實數的分類:(1) (2) .
13.數軸的性質:數軸上的點與實數一一對應.
14.無理數的近似值:實數計算的結果中若含有無理數且題目無近似要求,則結果應該用無理數表示;如果題目有近似要求,則結果應該用無理數的近似值表示.注意:(1)近似計算時,中間過程要多保留一位;(2)要求記憶: .
三角形
幾何A級概念:(要求深刻理解、熟練運用、主要用於幾何證明)
1.三角形的角平分線定義:
三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖) 幾何表達式舉例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分線
2.三角形的中線定義:
在三角形中,連結一個頂點和它的對邊的中點的線段叫做三角形的中線.(如圖)

幾何表達式舉例:
(1) ∵AD是三角形的中線
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中線

3.三角形的高線定義:
從三角形的一個頂點向它的對邊畫垂線,頂點和垂足間的線段叫做三角形的高線.
(如圖)

幾何表達式舉例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高

※4.三角形的三邊關系定理:
三角形的兩邊之和大於第三邊,三角形的兩邊之差小於第三邊.(如圖)

幾何表達式舉例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC<AC
∴……………

5.等腰三角形的定義:
有兩條邊相等的三角形叫做等腰三角形. (如圖)

幾何表達式舉例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等邊三角形的定義:
有三條邊相等的三角形叫做等邊三角形. (如圖)

幾何表達式舉例:
(1)∵ΔABC是等邊三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等邊三角形
7.三角形的內角和定理及推論:
(1)三角形的內角和180°;(如圖)
(2)直角三角形的兩個銳角互余;(如圖)
(3)三角形的一個外角等於和它不相鄰的兩個內角的和;(如圖)
※(4)三角形的一個外角大於任何一個和它不相鄰的內角.

(1) (2) (3)(4) 幾何表達式舉例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
8.直角三角形的定義:
有一個角是直角的三角形叫直角三角形.(如圖)
幾何表達式舉例:
(1) ∵∠C=90°
∴ΔABC是直角三角形
(2) ∵ΔABC是直角三角形
∴∠C=90°

9.等腰直角三角形的定義:
兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)

幾何表達式舉例:
(1) ∵∠C=90° CA=CB
∴ΔABC是等腰直角三角形
(2) ∵ΔABC是等腰直角三角形
∴∠C=90° CA=CB

10.全等三角形的性質:
(1)全等三角形的對應邊相等;(如圖)
(2)全等三角形的對應角相等.(如圖)

幾何表達式舉例:
(1) ∵ΔABC≌ΔEFG
∴ AB = EF ………
(2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………

11.全等三角形的判定:
「SAS」「ASA」「AAS」「SSS」「HL」. (如圖)

(1)(2)

(3) 幾何表達式舉例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG

12.角平分線的性質定理及逆定理:
(1)在角平分線上的點到角的兩邊距離相等;(如圖)
(2)到角的兩邊距離相等的點在角平分線上.(如圖)

幾何表達式舉例:
(1)∵OC平分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角平分線

13.線段垂直平分線的定義:
垂直於一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)

幾何表達式舉例:
(1) ∵EF垂直平分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直平分線

14.線段垂直平分線的性質定理及逆定理:
(1)線段垂直平分線上的點和這條線段的兩個端點的距離相等;(如圖)
(2)和一條線段的兩個端點的距離相等的點,在這條線段的垂直平分線上.(如圖)
幾何表達式舉例:
(1) ∵MN是線段AB的垂直平分線
∴ PA = PB
(2) ∵PA = PB
∴點P在線段AB的垂直平分線上

15.等腰三角形的性質定理及推論:
(1)等腰三角形的兩個底角相等;(即等邊對等角)(如圖)
(2)等腰三角形的「頂角平分線、底邊中線、底邊上的高」三線合一;(如圖)
(3)等邊三角形的各角都相等,並且都是60°.(如圖)

(1) (2) (3) 幾何表達式舉例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等邊三角形
∴∠A=∠B=∠C =60°

16.等腰三角形的判定定理及推論:
(1)如果一個三角形有兩個角都相等,那麼這兩個角所對邊也相等;(即等角對等邊)(如圖)
(2)三個角都相等的三角形是等邊三角形;(如圖)
(3)有一個角等於60°的等腰三角形是等邊三角形;(如圖)
(4)在直角三角形中,如果有一個角等於30°,那麼它所對的直角邊是斜邊的一半.(如圖)
(1) (2)(3) (4) 幾何表達式舉例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等邊三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等邊三角形
(4) ∵∠C=90°∠B=30°
∴AC = AB

17.關於軸對稱的定理
(1)關於某條直線對稱的兩個圖形是全等形;(如圖)
(2)如果兩個圖形關於某條直線對稱,那麼對稱軸是對應點連線的垂直平分線.(如圖)
幾何表達式舉例:
(1) ∵ΔABC、ΔEGF關於MN軸對稱
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF關於MN軸對稱
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的兩直角邊a、b的平方和等於斜邊c的平方,即a2+b2=c2;(如圖)
(2)如果三角形的三邊長有下面關系: a2+b2=c2,那麼這個三角形是直角三角形.(如圖)

幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜邊中線定理及逆定理:
(1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)
(2)如果三角形一邊上的中線是這邊的一半,那麼這個三角形是直角三角形.(如圖)

幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∵D是AB的中點
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形

幾何B級概念:(要求理解、會講、會用,主要用於填空和選擇題)
一 基本概念:
三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規作圖、輔助線、線段垂直平分線的集合定義、軸對稱的定義、軸對稱圖形的定義、勾股數.
二 常識:
1.三角形中,第三邊長的判斷: 另兩邊之差<第三邊<另兩邊之和.
2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交於一點,其中前兩個交點都在三角形內,而第三個交點可在三角形內,三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.
3.如圖,三角形中,有一個重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.
4.三角形能否成立的條件是:最長邊<另兩邊之和.
5.直角三角形能否成立的條件是:最長邊的平方等於另兩邊的平方和.
6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

7.如圖,雙垂圖形中,有兩個重要的性質,即:
(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一個內角是鈍角,但最少有兩個外角是鈍角.
9.全等三角形中,重合的點是對應頂點,對應頂點所對的角是對應角,對應角所對的邊是對應邊.
10.等邊三角形是特殊的等腰三角形.
11.幾何習題中,「文字敘述題」需要自己畫圖,寫已知、求證、證明.
12.符合「AAA」「SSA」條件的三角形不能判定全等.
13.幾何習題經常用四種方法進行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.
14.幾何基本作圖分為:(1)作線段等於已知線段;(2)作角等於已知角;(3)作已知角的平分線;(4)過已知點作已知直線的垂線;(5)作線段的中垂線;(6)過已知點作已知直線的平行線.
15.會用尺規完成「SAS」、「ASA」、「AAS」、「SSS」、「HL」、「等腰三角形」、「等邊三角形」、「等腰直角三角形」的作圖.
16.作圖題在分析過程中,首先要畫出草圖並標出字母,然後確定先畫什麼,後畫什麼;注意:每步作圖都應該是幾何基本作圖.
17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規畫圖.
※18.幾何重要圖形和輔助線:
(1)選取和作輔助線的原則:
① 構造特殊圖形,使可用的定理增加;
② 一舉多得;
③ 聚合題目中的分散條件,轉移線段,轉移角;
④ 作輔助線必須符合幾何基本作圖.

(2)已知角平分線.(若BD是角平分線)
① 在BA上截取BE=BC構造全等,轉移線段和角;

② 過D點作DE‖BC交AB於E,構造等腰三角形 .

(3)已知三角形中線(若AD是BC的中線)
① 過D點作DE‖AC交AB於E,構造中位線 ;

② 延長AD到E,使DE=AD
連結CE構造全等,轉移線段和角;
③ ∵AD是中線
∴SΔABD= SΔADC
(等底等高的三角形等面積)

(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底邊的中線AD
(頂角的平分線或底邊的高)構造全
等三角形;

② 作等腰三角形ABC一邊的平行線DE,構造
新的等腰三角形.

(5)其它
① 作等邊三角形ABC
一邊 的平行線DE,構造新的等邊三角形;

② 作CE‖AB,轉移角;

③ 延長BD與AC交於E,不規則圖形轉化為規則圖形;

④ 多邊形轉化為三角形;

⑤ 延長BC到D,使CD=BC,連結AD,直角三角形轉化為等腰三角形;

⑥ 若a‖b,AC,BC是角平
分線,則∠C=90°.

參考資料:去谷歌搜索:初二上數學知識點 然後點第一個

『玖』 八年級上冊數學書藍字知識點

第一章 一元一次不等式和一元一次不等式組一、一般地,用符號「<」(或「≤」),「>」(或「≥」)連接的式子叫做不等式。能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (註:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac<bc 不等式的其他性質:反射性:若a>b,則b<a;傳遞性:若a>b,且b>c,則a>c三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1。 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。六、常考題型: 1、 求4x-6 7x-12的非負數解. 2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。 第二章 分解因式一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解與整式乘法是相反方向的變形。三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.四、分解因式的一般步驟為:(1)若有「-」先提取「-」,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法。2、運用公式法。 第三章 分式註:1°對於任意一個分式,分母都不能為零. 2°分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3°分式的值為零含兩層意思:分母不等於零;分子等於零。( 中B≠0時,分式有意義;分式 中,當B=0分式無意義;當A=0且B≠0時,分式的值為零。)常考知識點:1、分式的意義,分式的化簡。2、分式的加減乘除運算。3、分式方程的解法及其利用分式方程解應用題。第四章 相似圖形一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=k??CD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 ≈0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形。 相似比:相似多邊形對應邊的比叫做相似比.二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼 .如果(b,d都不為0),那麼ad=bc.2、合比性質:如果 ,那麼 。3、等比性質:如果 =…= (b+d+…+n≠0),那麼 。4、更比性質:若 那麼 。5、反比性質:若 那麼 三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比。相似多邊形的周長比等於相似比,面積比等於相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似。5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比。 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比。八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質。2、相似三角形的性質及判定。相似多邊形的性質。第五章 數據的收集與處理(1)普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查.(2)總體:其中所要考察對象的全體稱為總體。(3)個體:組成總體的每個考察對象稱為個體(4)抽樣調查:(sampling investigation):從總體中抽取部分個體進行調查,這種調查稱為抽樣調查.(5)樣本(sample):其中從總體中抽取的一部分個體叫做總體的一個樣本。(6) 當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查.為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性.還要注意關注樣本的大小. (7)我們稱每個對象出現的次數為頻數。而每個對象出現的次數與總次數的比值為頻率。數據波動的統計量:極差:指一組數據中最大數據與最小數據的差。方差:是各個數據與平均數之差的平方的平均數。標准差:方差的算術平方根。識記其計算公式。一組數據的極差,方差或標准差越小,這組數據就越穩定。還要知平均數,眾數,中位數的定義。刻畫平均水平用:平均數,眾數,中位數。 刻畫離散程度用:極差,方差,標准差。常考知識點:1、作頻數分布表,作頻數分布直方圖。2、利用方差比較數據的穩定性。3、平均數,中位數,眾數,極差,方差,標准差的求法。3、頻率,樣本的定義 第六章 證明一、對事情作出判斷的句子,就叫做命題. 即:命題是判斷一件事情的句子。一般情況下:疑問句不是命題.圖形的作法不是命題. 每個命題都有條件(condition)和結論(conclusion)兩部分組成. 條件是已知的事項,結論是由已知事項推斷出的事項. 一般地,命題都可以寫成「如果……,那麼……」的形式.其中「如果」引出的部分是條件,「那麼」引出的部分是結論. 要說明一個命題是一個假命題,通常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論.這種例子稱為反例。二、三角形內角和定理:三角形三個內角的和等於180度。1、證明三角形內角和定理的思路是將原三角形中的三個角「湊」到一起組成一個平角.一般需要作輔助線.既可以作平行線,也可以作一個角等於三角形中的一個角.2、三角形的外角與它相鄰的內角是互為補角.三、三角形的外角與它不相鄰的內角關系是:(1)三角形的一個外角等於和它不相鄰的兩個內角的和.(2)三角形的一個外角大於任何一個和它不相鄰的內角.四、證明一個命題是真命題的基本步驟是:(1)根據題意,畫出圖形.(2)根據條件、結論,結合圖形,寫出已知、求證.(3)經過分析,找出由已知推出求證的途徑,寫出證明過程. 在證明時需注意:(1)在一般情況下,分析的過程不要求寫出來.(2)證明中的每一步推理都要有根據. 如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。30。所對的直角邊是斜邊的一半。斜邊上的高是斜邊的一半。常考知識點:1、三角形的內角和定理,及三角形外角定理。2兩直線平行的性質及判定。命題及其條件和結論,真假命題的定義。(從網上經過反復比較後給你找的,採納哦!)%D%A